Skip to main content
Log in

Tribological Performance Improvement of Bearing Steel GCr15 by an Alternating Magnetic Treatment

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

This paper discusses the tribological performance of the bearing steel GCr15 treated by an alternating magnetic field. The wear test results showed that the average of wear mass losses decreased by nearly 80% after the magnetic treatment, compared to those before the magnetic treatment. The micro-hardness and microstructures (i.e., grain size, carbide morphology and dislocation distribution) before and after the magnetic treatment were experimentally investigated, and the mechanism of the tribological performance improvement of the bearing steel GCr15 due to the magnetic treatment was then revealed based on the above results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.C. Koch, Mat. Sci. Eng. A 287, 213 (2000)

    Article  Google Scholar 

  2. C. Gheorghies, I.I. Stefanescu, J. Iron. Steel Res. Int. 17, 45 (2010)

    Google Scholar 

  3. B.E. Klamecki, J. Mater. Process. Technol. 141, 385 (2003)

    Article  Google Scholar 

  4. Y.L. Song, L. Hua, B. Wang, J. Wuhan Univ. Technol. 24, 857 (2009)

    Article  Google Scholar 

  5. Z.P. Cai, X.Q. Huang, Mat. Sci. Eng. A. 528, 6287 (2011)

    Article  Google Scholar 

  6. Y.L. Song, L. Hua, J. Mater. Sci. Technol. 28, 803 (2012)

    Article  Google Scholar 

  7. S. Wu, A. Lu, H. Zhao, H. Fang, F. Tang, J. Mater. Process. Technol. 132, 198 (2003)

    Article  Google Scholar 

  8. Y. Fahmy, T. Hare, R. Took, Scr. Mater. 38, 1355 (1998)

    Article  Google Scholar 

  9. A. Celik, A.F. Yetim, A. Alsaran, Mater. Des. 26, 700 (2005)

    Article  Google Scholar 

  10. B.T. Lü, S.R. Qiao, X.Y. Sun, Scr. Mater. 40, 767 (1999)

    Article  Google Scholar 

  11. E. Iriondo, M.A. Gutiérrez, B. González, J.L. Alcarazb, G.S. Daehn, J. Mater. Process. Technol. 211, 909 (2011)

    Article  Google Scholar 

  12. Y.I. Golovin, Phys. Solid State 46, 789 (2004)

    Article  Google Scholar 

  13. V. Fleurov, M. Molotskii, Phys. Rev. Lett. 78, 2779 (1997)

    Article  Google Scholar 

  14. M.I. Molotskii, Mat. Sci. Eng. A 287, 248 (2000)

    Article  Google Scholar 

  15. O. Bataineh, B. Klamecki, B.G. Koepke, J. Mater. Process. Technol. 134, 190 (2003)

    Article  Google Scholar 

  16. J. Bockstedt, B.E. Klamecki, Wear 262, 1086 (2007)

    Article  Google Scholar 

  17. T.A. Stolarski, Y. Makida, Wear 271, 1109 (2011)

    Article  Google Scholar 

  18. A.F. Yetim, H. Kovaci, M. Aslan, A. Çelik, Wear 301, 636 (2013)

    Article  Google Scholar 

  19. Y.H. Wei, Y.Z. Zhang, Y. Chen, S.M. Du, Tribol. Int. 57, 162 (2013)

    Article  Google Scholar 

  20. GB/T 7314-2005, Metallic Materials-Compression Testing at Ambient Temperature, China National Standard, 2005

  21. X. Miao, D.S. Qian, Y.L. Song, J. Mech. Eng. 50, 112 (2014)

    Article  Google Scholar 

  22. L.P. Ma, Z.Q. Liang, X.B. Wang, W.X. Zhao, L. Jiao, Z.B. Liu, Acta Metall. Sin. (Engl. Lett.) 63, 137 (2015). (in Chinese)

    Google Scholar 

  23. C.Q. Gao, Heat Treat. 8, 62 (1987)

    Google Scholar 

  24. G.M. Sorokin, V.N. Malyshev, Tribol. Int. 41, 515 (2008)

    Article  Google Scholar 

  25. P.J. Ferreira, J.B.V. Sande, Scr. Mater. 41, 117 (1999)

    Article  Google Scholar 

  26. L.P. Ma, W.X. Zhao, Z.Q. Liang, X.B. Wang, L.J. Xie, L. Jiao, T.F. Zhou, Mater. Sci. Eng. A 609, 16 (2014)

    Article  Google Scholar 

  27. S.H. Yang, Crystal Dislocation Theory Foundation (Science Press, Beijing, 1988), pp. 46–54

    Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant Nos. 51305317 and 51675392), the Natural Science Foundation of Hubei Province of China (Grant No. 2014CFA119) and the Special Project of Technological Innovation of Hubei Province (Grant No. 2016AAA053).

We also show our thanks to the MatProFuture Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Li Song.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YL., Yu, C., Miao, X. et al. Tribological Performance Improvement of Bearing Steel GCr15 by an Alternating Magnetic Treatment. Acta Metall. Sin. (Engl. Lett.) 30, 957–964 (2017). https://doi.org/10.1007/s40195-017-0587-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0587-2

Keywords

Navigation