Skip to main content

Advertisement

Log in

Threshold Chloride Concentration for Passivity Breakdown of Mg–Zn–Gd–Nd–Zr Alloy (EV31A) in Basic Solution

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Mg–Zn–Gd–Nd–Zr alloy (EV31A) is a heat-treatable magnesium (Mg) cast alloy that can be used up to 200 °C for automobile and aerospace applications. This alloy has excellent mechanical properties (ultimate tensile strength: 280 MPa at room temperature, and ~230 MPa at 200 °C) and improved corrosion resistance. Electrochemical corrosion studies were conducted on this alloy under different heat treatment conditions in 0.1 M NaOH solution with the addition of 0–1000 ppm of chloride. The alloy showed excellent passivity in the 0.1 M NaOH solution. The passive potential range typically extended to more than 1.2 VAg/AgCl. The transpassive potential was observed to be dependent on heat treatment condition of the alloy. More than 80 ppm of chloride was required to induce passivity breakdown in any heat treatment condition. Peak aging at 200 °C for 16 h imparted better resistance for localized corrosion than other heat-treated conditions. The alloy in the as-received condition showed the highest passivation kinetics due to its smaller grain size that possibly increased the diffusion of reactive elements to form protective oxide. The passive film of the EV31A alloy showed n-type semiconductivity with a charge carrier density of ~2 × 1021 cm−3 with no chloride addition. The charge carrier density increased with chloride addition in the electrolyte which could be correlated with the susceptibility to localized corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Huang, W. Gan, K.U. Kainer, N. Hort, J. Magnes, Alloys 2, 1 (2014)

    Article  Google Scholar 

  2. N. Stanford, D. Atwell, A. Beer, C. Davies, M.R. Barnett, Scripta Mater. 59, 772 (2008)

    Article  Google Scholar 

  3. G.L. Makar, J. Kruger, Int. Met. Rev. 38, 138 (1993)

    Article  Google Scholar 

  4. L.L. Rokhlin, Mg Alloys Containing RE Metals (Taylor and Francis, London, 2003)

    Google Scholar 

  5. Z.L. Ning, H. Wang, H.H. Liu, F.Y. Cao, S.T. Wang, J.F. Sun, Mater. Des. 31, 4438 (2010)

    Article  Google Scholar 

  6. G. Riontino, D. Lussana, M. Massazza, G. Barucca, P. Mengucci, R. Ferragut, J. Alloys Compd. 463, 200 (2008)

    Article  Google Scholar 

  7. Elektron 21 Data sheet: 455, Magnesium Elektron UK (2006)

  8. R. Arroyave, D. Shin, Z.K. Liu, Calphad 29, 230 (2005)

    Article  Google Scholar 

  9. S. Bhan, A. Lal, J. Phase Equilib. 14, 634 (1993)

    Article  Google Scholar 

  10. P.H. Fu, L.M. Peng, H.Y. Jiang, C.Q. Zhai, X. Gao, J.F. Nie, Mater. Sci. Forum 97, 546 (2007)

    Google Scholar 

  11. A.A. Nayeb-Hashemi, J.B. Clark, The Mg-Nd system. Bull. Alloy Phase Diagrams 9, 618 (1988)

    Article  Google Scholar 

  12. S. Delfino, A. Saccone, R. Ferro, Metal. Trans. A 21, 2109 (1990)

    Article  Google Scholar 

  13. P. Lyon, T. Wilks, I. Syed, ed. by N.R. Neelameggham, H.I. Kaplan, B.R. Powell, Magnes. Technol 2005. TMS 303 (2005)

  14. J.F. Nie, X. Gao, S.M. Zhu, Scripta Mater. 53, 1049 (2005)

    Article  Google Scholar 

  15. A. Kielbus, T. Rzychon, R. Przeliorz, Mater. Sci. Forum 638–642, 1447 (2010)

    Article  Google Scholar 

  16. A. Kielbus, T. Rzychon, L. Litynska-Dobrzynska, G. Dercz, Solid State Phenom. 163, 106 (2010)

    Article  Google Scholar 

  17. D.H. Ping, K. Hono, J.F. Nie, Scripta Mater. 48, 1017 (2003)

    Article  Google Scholar 

  18. L.R. Gill, G.W. Lorimer, P. Lyon, Adv. Eng. Mater. 9, 784 (2007)

    Article  Google Scholar 

  19. G. Williams, K. Gusieva, N. Birbilis, Corros. (NACE) 68, 489 (2012)

    Article  Google Scholar 

  20. P. Maier, R. Peters, C.L. Mendis, S. Muller, N. Hort, JOM 68, 1183 (2016)

    Article  Google Scholar 

  21. T. Cain, L.G. Bland, N. Birbilis, J.R. Scully, Corros. (NACE) 70, 1043 (2014)

    Article  Google Scholar 

  22. A.D. Sudholz, N.T. Kirkland, R.G. Buchheit, N. Birbilis, Electrochem. Solid-State Lett. 14, C5 (2011)

    Article  Google Scholar 

  23. F. Czerwinski, Int. Mater. Rev. 60, 264 (2015)

    Article  Google Scholar 

  24. X. Xia, J.F. Nie, C.H.J. Davies, W.N. Tang, S.W. Xu, N. Birbilis, Corros. (NACE) 71, 1370 (2015)

    Article  Google Scholar 

  25. K.M. Ismail, S. Virtanen, Electrochem. Solid State Lett. 10, C9 (2007)

    Article  Google Scholar 

  26. M. Taheri, J.R. Kish, J. Electrochem. Soc. 160, C36 (2013)

    Article  Google Scholar 

  27. S. Li, A.C. Bacco, N. Birbilis, H. Cong, Corros. Sci. 112, 596 (2016)

    Article  Google Scholar 

  28. G.L. Song, K.A. Unocic, Corros. Sci. 98, 758 (2015)

    Article  Google Scholar 

  29. F. Cao, G.L. Song, A. Atrens, Corros. Sci. 111, 835 (2016)

    Article  Google Scholar 

  30. G.L. Song, K.A. Unocic, M. Harry III, E. Cakmak, M.P. Brady, P.E. Gannon, P. Himmer, Q. Andrews, Corros. Sci. 104, 36 (2016)

    Article  Google Scholar 

  31. H.B. Yao, Y. Li, A.T.S. Wee, Electrochim. Acta 48, 4197 (2003)

    Article  Google Scholar 

  32. R. Pinto, M.G.S. Ferreira, M.J. Carmezim, M.F. Montemor, Electrochim. Acta 55, 2482 (2010)

    Article  Google Scholar 

  33. R. Pinto, M.G.S. Ferreira, M.J. Carmezim, M.F. Montemor, Electrochim. Acta 56, 1535 (2011)

    Article  Google Scholar 

  34. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE International, CEBELCOR, Houston Texas, Brussels, 1974), pp. 139–145

    Google Scholar 

  35. D. Wu, Y.Q. Ma, R.S. Chen, W. Ke, J. Magnes, Alloys 2, 20 (2014)

    Article  Google Scholar 

  36. D.A. Jones, Principles and Prevention of Corrosion, 2nd edn. (Prentice-Hall, New Jersey, 1996)

    Google Scholar 

  37. P.W. Chu, E.A. Marquis, Corros. Sci. 101, 94 (2015)

    Article  Google Scholar 

  38. K.S. Raja, D.A. Jones, Corros. Sci. 48, 1623 (2005)

    Article  Google Scholar 

  39. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions NACE 197 (1974)

  40. M.G.L.-B. Natta, Corrosion 57, 714 (2001)

    Article  Google Scholar 

  41. E. Gileadi, Physical Electrochemistry (Wiley-VCH, Weinheim, 2011), pp. 98–99

    Google Scholar 

  42. G. Song, A. Atrens, D. St. John, X. Wu, J. Nairn, Corros. Sci. 39, 1981 (1997)

    Article  Google Scholar 

  43. G.S. Frankel, A. Samaniego, N. Birbilis, Corros. Sci. 70, 104 (2013)

    Article  Google Scholar 

  44. S.H. Salleh, S. Thomas, J.A. Yuwono, K. Venkatesan, N. Birbilis, Electrochim. Acta 161, 144 (2015)

    Article  Google Scholar 

  45. G.T. Burstein, D.H. Davies, J. Electrochem. Soc. 128, 33 (1981)

    Article  Google Scholar 

  46. G. Baril, G. Galicia, C. Deslouis, N. Pebere, B. Tribollet, V. Vivier, J. Electrochem. Soc. 154, C108 (2007)

    Article  Google Scholar 

  47. M. Anik, G. Celikten, Corros. Sci. 49, 1878 (2007)

    Article  Google Scholar 

  48. S. Thomas, N.V. Madhekar, G.S. Frankel, N. Birbilis, Curr. Opin. Solid State Mater. Sci. 19, 85 (2015)

    Article  Google Scholar 

  49. Y. Song, E.H. Han, K. Dong, D. Shan, C.D. Yim, B.S. You, Corros. Sci. 88, 215 (2014)

    Article  Google Scholar 

  50. G.L. Song, Cem. Concr. Res. 30, 1723 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The support provided by the US Nuclear Regulatory Commission through a faculty development grant NRC-HQ-84-15-G-0025 is gratefully acknowledged. J. Ninlachart acknowledges the support by Royal Thai Navy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakraphan Ninlachart.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninlachart, J., Raja, K.S. Threshold Chloride Concentration for Passivity Breakdown of Mg–Zn–Gd–Nd–Zr Alloy (EV31A) in Basic Solution. Acta Metall. Sin. (Engl. Lett.) 30, 352–366 (2017). https://doi.org/10.1007/s40195-017-0548-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0548-9

Keywords

Navigation