Skip to main content

Advertisement

Log in

Corrosion Behavior of a Low-Carbon Steel in Simulated Marine Splash Zone

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Experiments were designed to simulate the corrosion of a low-carbon steel exposed to a marine splash zone. The composition and morphology of the rust were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy, energy-dispersive spectrometry and scanning electron microscopy. Corrosion resistance of the rust films was demonstrated by the electrochemical impedance spectroscopy. The wettability of the steel surface was calculated from the data concerning the wetting degree and the conductivity. The results showed that, in the initial stage, the products of the outer rust layer were mainly made up of Fe(III) oxyhydroxide, while the main component of the inner rust layer was magnetite. With an increase in the corrosion time, the inner rust layer continuously turned into the outer rust layer. In addition, both rust layers became dense, thus playing a protective role with respect to matrix. The existence of the rust layer significantly prolonged the residence time of the seawater on the sample surface, a result that tends to improve the cathodic protection effect for steel structures exposed to marine splash zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.S. Dunn, M.B. Bogart, C.S. Brossia, G.A. Cragnolino, Corrosion 56, 470 (2000)

    Article  Google Scholar 

  2. J.D. Liu, Y.T. Li, B.R. Hou, Mater. Prot. 45, 29 (2012)

    Google Scholar 

  3. E. Schindelholz, R.G. Kelly, Corros. Rev. 30, 135 (2001)

    Google Scholar 

  4. W.M. Zhao, Y. Wang, C. Liu, Surf. Coat. Technol. 205, 2267 (2012)

    Article  Google Scholar 

  5. H.Q. Shao, W.L. Han, X.Y. Wang, A.G. Li, Corros. Prot. 29, 646 (2008)

    Google Scholar 

  6. J.G. Liu, Y.T. Li, B.R. Hou, Corros. Prot. 33, 833 (2012)

    Google Scholar 

  7. Z.G. Xiao, J.A. Zhang, H. Zheng, C.G. Li, Total Corros. Control 26, 23 (2012)

    Google Scholar 

  8. X.M. Yu, Y.L. Huang, A.P. Yadav, W.J. Qu, R. DE Marco, J. Electrochem. Soc. 87, 541 (2015)

    Google Scholar 

  9. X.M. Yu, Y.L. Huang, W.J. Qu, A.P. Yadav, R. DE Marco, Int. J. Electrochem. Sci. 9, 3760 (2014)

    Google Scholar 

  10. G.A. Mahdy, A. Nishikata, T. Tsuru, Corros. Sci. 42, 183 (2000)

    Article  Google Scholar 

  11. R. Montoya, V. Nagel, J.C. Galvan, J.M. Bastidas, Corros. Sci. 51, 2857 (2009)

    Article  Google Scholar 

  12. R. Montoya, V. Nagel, J.C. Galvan, J.M. Bastidas, Mater. Corros. 64, 1055 (2013)

    Article  Google Scholar 

  13. X. Mu, J. Wei, J.H. Dong, W. Ke, Acta Metall. Sin. (Engl. Lett.) 50, 1294 (2014)

    Google Scholar 

  14. J.A. Ieong, C.K. Jin, W.S. Chung, J. Adv. Concr. Technol. 10, 389 (2012)

    Article  Google Scholar 

  15. H.N. Hao, Z.L. Li, T.Y. Wang, Chem. Eng. Mach. 39, 494 (2012)

    Google Scholar 

  16. X. Zhang, S.W. Yang, W.H. Zhang, H. Guo, X.L. He, Corros. Sci. 82, 165 (2014)

    Article  Google Scholar 

  17. T. Ohtsuka, T. Komatsu, Corros. Sci. 47, 2571 (2005)

    Article  Google Scholar 

  18. S. Hœrlé, Corros. Sci. 46, 1431 (2004)

    Article  Google Scholar 

  19. Y. Zou, J. Wang, Y. Zheng, J. Chin. Soc. Corros. Prot. 31, 92 (2011)

    Google Scholar 

  20. X. Mu, J. Wei, J.H. Dong, W. Ke, Acta Metall. Sin. (Engl. Lett.) 48, 420 (2012)

    Article  Google Scholar 

  21. R. Jeffrey, R.E. Melchers, Corrosion 65, 695 (2009)

    Article  Google Scholar 

  22. R. Jeffrey, R.E. Melchers, Corros. Sci. 65, 26 (2012)

    Article  Google Scholar 

  23. P. Refait, Corros. Sci. 90, 375 (2015)

    Article  Google Scholar 

  24. H. Okada, Y. Hosoi, H. Naito, Corrosion 26, 429 (1970)

    Article  Google Scholar 

  25. T. Li, B.R. Hou, Chin. J. Oceanol. Limnol. 16, 231 (1998)

    Article  Google Scholar 

  26. T. Nishimura, H. Katayama, K. Noda, T. Kodama, Corrosion 56, 935 (2000)

    Article  Google Scholar 

  27. J.L. Crolet, N. Thevenot, S. Nesic, Corrosion 54, 194 (1998)

    Article  Google Scholar 

  28. H. Antony, L. Legrand, L. Marechal, S. Perrin, Ph Dillmann, A. Chausse, Electrochim. Acta 51, 745 (2005)

    Article  Google Scholar 

  29. Y.L. Huang, X.M. Yu, H.M. Zheng, W.J. Qu, A.P. Yadav, R.D. Marco, J. Chin. Soc. Corros. Prot. 35, 475 (2015)

    Google Scholar 

  30. W.J. Qu, Y.L. Huang, X.M. Yu, D. Lu, H.M. Zheng, R.D. Marco, Corros. Eng., Sci. Technol. 51, 163 (2016)

    Article  Google Scholar 

  31. J.G. Liu, Z.L. Li, Y.T. Li, B.R. Hou, Anti-Corros. Methods Mater. 63, 56 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 41576076); the National Environmental Corrosion Platform (NECP); and the National Key Basic Research Program (“973 Program,” No. 2014CB643300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Du.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HH., Du, M. Corrosion Behavior of a Low-Carbon Steel in Simulated Marine Splash Zone. Acta Metall. Sin. (Engl. Lett.) 30, 585–593 (2017). https://doi.org/10.1007/s40195-017-0535-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0535-1

Keywords

Navigation