Skip to main content
Log in

Exacerbated stress corrosion cracking in arc welds of 7xxx aluminum alloys

Henry Granjon prize 2017 winner Category B: Materials Behaviour and Weldability

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Cu-lean, high-strength 7xxx series aluminum alloys (AAs) are increasingly utilized in welded structures for vehicle light-weighting. The complex stress corrosion cracking (SCC) phenomenon in the 7xxx AA base metals has been extensively studied in the literature. However, the SCC in a welded joint is further compounded by the existence of highly inhomogeneous microstructure formed during welding. The present investigation is focused on the exacerbated SCC observed in the joints made of AA 7003-T4 (Al–Zn–Mg) plates welded with AA 5356 (Al–Mg) filler metal. It studies the contribution to SCC by a variety of factors especially the precipitates in the weld toe and the heat-affected zone in the as-welded and post-weld heat-treated conditions. The stress intensity factor experienced at the crack tip is ranked using the peak strain measured using the digital image correlation technique. Based on the testing results, a theory for the exacerbated SCC in the weld joints is established. Finally, the feasibility of two different engineering solutions to SCC in these weldments is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AA:

Aluminum alloy

AW:

As-welded

BM:

Base metal

DIC:

Digital image correlation

EDM:

Electron discharge machining

EDS:

Energy-dispersive x-ray spectroscopy

FM:

Filler metal

FOZ:

Fused-overlap zone

FL:

Fusion line

FSW:

Friction stir welding

FZ:

Fusion zone

HAZ:

Heat-affected zone

IGC:

Intergranular corrosion

KI :

Stress intensity

KISCC :

Critical SCC stress intensity

PB:

Paint bake

PBTC:

Paint bake thermal cycle

SCC:

Stress corrosion cracking

SCC:

Stress corrosion cracking

TMAZ:

Thermo-mechanically affected zone

WT:

Weld toe

References

  1. Knight S, Pohl K, Holroyd N, Birbilis P, Muddle B, Goswami RLS (2015) Some effects of alloy composition on stress corrosion cracking in Al–Zn–Mg–Cu alloys. Corros Sci 98:50–62. https://doi.org/10.1016/j.corsci.2015.05.016

    Article  Google Scholar 

  2. Lin J-C, Liao H-L, Jehng W-D, Chang C-H, Lee S-L (2006) Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution. Corros Sci 48(10):3139–3156. https://doi.org/10.1016/j.corsci.2005.11.009

    Article  Google Scholar 

  3. Sun X, Zhang B, Lin H, Zhou Y, Sun L, Wang J, Han E-H, Ke W (2013) Correlations between stress corrosion cracking susceptibility and grain boundary microstructures for an Al–Zn–Mg alloy. Corros Sci 77:103–112. https://doi.org/10.1016/j.corsci.2013.07.032

    Article  Google Scholar 

  4. Hatamleh O, Singh P, Garmestani H (2009) Corrosion susceptibility of peened friction stir welded 7075 aluminum alloy joints. Corros Sci 51(1):135–143. https://doi.org/10.1016/j.corsci.2008.09.031

    Article  Google Scholar 

  5. Mousavi M, Cross C, Grong O, Hval M (1997) Controlling weld metal dilution for optimised weld performance in aluminium. Sci Technol Weld Join 2(6):275–278. https://doi.org/10.1179/stw.1997.2.6.275

    Article  Google Scholar 

  6. S. Yang and Q. Lin, Adv. Mater. Res., Vols. 148–149, pp. 640–643, 2011

  7. Kou S (2003) Welding metallurgy, 2nd edn. Wiley, New York

    Google Scholar 

  8. Liao C (1993) SCC behavior of an Al–3.7wt%Zn–2.5wt%Mg alloy before and after welding in 3.5% NaCl Solution. Corrosion 49(1):52–59. https://doi.org/10.5006/1.3316034

    Article  Google Scholar 

  9. Borchers T, McAllister D, Zhang W (2015) Metall. Mater Trans A 46A:1827–1823

    Article  Google Scholar 

  10. Borchers T, Seid A, Babu S, Shafer P, Zhang W (2015) Effect of filler metal and post-weld friction stir processing on stress corrosion cracking susceptibility of Al–Zn–Mg arc welds. Sci Technol Weld Join 20(6):460–467. https://doi.org/10.1179/1362171814Y.0000000273

    Article  Google Scholar 

  11. M. Reboul, B. Dubost and M. Lashermes, Corros Sci, vol. 25, pp. 999–1018, 1983

  12. Jha AK, Shiresha GN, Sreekumar K (2008) Stress corrosion cracking in alumnium alloy AFNOR 7020-T6 water tank adaptor for liquid propulsion system. Eng Fail Anal 15(6):787–795. https://doi.org/10.1016/j.engfailanal.2007.05.009

    Article  Google Scholar 

  13. Frankel G, Xia Z (1999) Localized corrosion and stress corrosion cracking resistance of friction stir welded aluminum alloy 5454. Corrosion 55(2):139–150. https://doi.org/10.5006/1.3283974

    Article  Google Scholar 

  14. M. Speidel, Met. Trans, vol. 6A, p. 1975

  15. Holroyd N, Vasudevan A, Christodoulou L (1989) Stress corrosion of high-strength aluminum alloys. Treatise Mater Sci Technol 31:463–483. https://doi.org/10.1016/B978-0-12-341831-9.50021-8

    Article  Google Scholar 

  16. Baumgartner M, Kaesche H (1988) Intercrystalline corrosion and stress corrosion cracking of AlZnMg alloys. Corrosion 44(4):231–239. https://doi.org/10.5006/1.3583931

    Article  Google Scholar 

  17. Sprowls D, Brown R (1969) Fundamental aspects of stress corrosion cracking, R. Staehle, Ed. Houston, National Association of Corrosion Engineers

    Google Scholar 

  18. R. Braun, Mat.-wiss. u. Werkstofftech, vol. 38, no. 9, pp. 674–688, 2007

  19. Burleigh T (1991) The postulated mechanisms for stress corrosion cracking of aluminum alloys: a review of the literature 1980–1989. Corrosion 47(2):89–97. https://doi.org/10.5006/1.3585235

    Article  Google Scholar 

  20. G. Lu and e. al., Hydrogen enhanced local plasticity in aluminum: an ab initio study, 2002

  21. S. Lynch, Acta Metall., vol. 36, p. 2639, 1988

  22. Najjar D, Magnin T, Warner T (1997) Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy. Mater Sci Eng A 238(2):293–302. https://doi.org/10.1016/S0921-5093(97)00369-9

    Article  Google Scholar 

  23. Frankel G (1998) Pitting corrosion of metals. J Electrochem Soc 145(6):2186–2198. https://doi.org/10.1149/1.1838615

    Article  Google Scholar 

  24. Zaid B, Saidi D, Benzaid A, Hadji S (2008) Corros. Sci 50:1841–1847

    Google Scholar 

  25. Nicolas M, Deschamps A (2003) Characterisation and modelling of precipitate evolution in an Al–Zn–Mg alloy during non-isothermal heat treatments. Acta Mater 51(20):6077–6094. https://doi.org/10.1016/S1359-6454(03)00429-4

    Article  Google Scholar 

  26. Muller I, Galvele J (1976) Corros Sci 17:995–1007

    Article  Google Scholar 

  27. J. Dabrowski and J. Kish, Corros., vol. 71, pp. 895–907, 2015

  28. Deng Y, Peng B, Xu G, Pan Q, Ye R, Wang Y, Lu L and Z. Yin, Corros Sci, vol. 100, pp. 57–72, 2015, DOI: https://doi.org/10.1016/j.corsci.2015.06.031

  29. Nicolas M, Deschamps A (2004) Metall Mater Trans A 35A:1437–1448

    Article  Google Scholar 

  30. N. Holroyd and G. Scamans (2013) Metall. Mater. Trans. A, vol. 44A, pp. 1230–1253

  31. Wu Y, Wang Y (2010) Theor. Appl Fract Mech 54(1):19–26. https://doi.org/10.1016/j.tafmec.2010.06.011

    Article  Google Scholar 

  32. M. Baydogan, H. Cimenoglu, S. Kayali and J. Rasty (2008) Metall Mater Trans A, vol. 39A, pp. 2470–2476

  33. Zelinski A, Chryzanowski J, Warmuzek M, Gazda A, Jezierska E (2004) Influence of retrogression and reaging on microstructure, mechanical properties and susceptibility to stress corrosion cracking of an Al–Zn–Mg alloy. Mater Corros 55(2):77–87. https://doi.org/10.1002/maco.200303710

    Article  Google Scholar 

  34. Thakur A, Raman R, Malhotra S (2007) Hydrogen embrittlement studies of aged and retrogressed-reaged Al–Zn–Mg alloys. Mater Chem Phys 101(2–3):441–447. https://doi.org/10.1016/j.matchemphys.2006.08.004

    Article  Google Scholar 

  35. Hwang R, Chou C (1997) The study on microstructural and mechanical properties of weld heat affected zone of 7075-T651 aluminum alloy. Scr Mater 38(2):215–221. https://doi.org/10.1016/S1359-6462(97)00472-7

    Article  Google Scholar 

  36. Ugiansky G, Skolnick L, Steifel S (1969) Directional effects in the stress corrosion cracking of an aluminum alloy. Corrosion 25(2):77–86. https://doi.org/10.5006/0010-9312-25.2.77

    Article  Google Scholar 

  37. T. Borchers and W. Zhang, Fused-overlap zone in aluminum arc welds: tendency of formation and effect on corrosion, in Trends in Welding Research: 10th International Conference, Tokyo, 2016

  38. Online Materials Information Resource - MatWeb (2018) Matweb.com [Online]. Available: http://www.matweb.com. Accessed 12 Feb 2018

  39. T. Borchers and W. Zhang (2015) Welding methods and welded joints for joining high-strength aluminum alloys. USA Patent Application No.: 62/251,427

  40. Blaber J, Adair B, Antoniou A (2015) Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Exp Mech 55(6):1105–1122. https://doi.org/10.1007/s11340-015-0009-1

    Article  Google Scholar 

  41. T. Borchers, A. Seid, W. Zhang, P. Shafer, S. Babu and D. Phillips, Stress corrosion cracking susceptibility of gas metal arc welded 7xxx series aluminum alloys, in Sheet Metal Welding Conference XVI, Detroit, 2014

  42. Cooper K, Kelly R (2007) Crack tip chemistry and electrochemistry of environmental cracks in AA 7050. Corros Sci 49(6):2636–2662. https://doi.org/10.1016/j.corsci.2006.12.001

    Article  Google Scholar 

  43. Sun X, Zhang B, Lin H, Zhou Y, Sun L, Wang J, Han E-H, Ke W (2014) Atom probe tomographic study of elemental segregation at grain boundaries for a peak-aged Al–Zn–Mg alloy. Corros Sci 79:1–4. https://doi.org/10.1016/j.corsci.2013.10.027

    Article  Google Scholar 

  44. Galvele J (1981) Transport processes in passivity breakdown—II. Full hydrolysis of the metal ions. Corros Sci 21(8):551–579. https://doi.org/10.1016/0010-938X(81)90009-3

    Article  Google Scholar 

Download references

Acknowledgements

The present research was supported by Honda R&D Americas, Inc. through the Manufacturing and Materials Joining Innovation Center (Ma2JIC), a NSF industry/university cooperative research center (I/UCRC). STEM was performed by Rachel Seibert of the Illinois Institute of Technology using the FEI Talos F200X STEM provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program and the Nuclear Science User Facilities. Helpful discussion with Dr. Niyanth Sridharan of Oak Ridge National Laboratory (ORNL) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Borchers.

Additional information

Recommended for publication by Commission IX - Behaviour of Metals Subjected to Welding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borchers, T.E., Seid, A., Shafer, P. et al. Exacerbated stress corrosion cracking in arc welds of 7xxx aluminum alloys. Weld World 62, 783–792 (2018). https://doi.org/10.1007/s40194-018-0564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-018-0564-z

Keywords

Navigation