Skip to main content
Log in

An operational matrix method to solve linear Fredholm–Volterra integro-differential equations with piecewise intervals

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

In recent times, operational matrix methods become overmuch popular. Actually, we have many more operational matrix methods. In this study, a new remodeled method is offered to solve linear Fredholm–Volterra integro-differential equations (FVIDEs) with piecewise intervals using Chebyshev operational matrix method. Using the properties of the Chebyshev polynomials, the Chebyshev operational matrix method is used to reduce FVIDEs into a linear algebraic equations. Some numerical examples are solved to show the accuracy and validity of the proposed method. Moreover, the numerical results are compared with some numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5

Similar content being viewed by others

References

  1. Delves, L.M., Mohamed, J.L.: Computational Methods for Integral Equations. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  2. Agarwal, R.P. (ed.): Contributions in Numerical Mathematics. World Scientific Publishing, Singapore (1993)

    MATH  Google Scholar 

  3. Agarwal, R.P. (ed.): Dynamical Systems and Applications. World Scientific Publishing, Singapore (1995)

    MATH  Google Scholar 

  4. Wazwaz, A.M.: A First Course in Integral Equations. World Scientifics, Singapore (1997)

    Book  Google Scholar 

  5. Bhrawy, A.H., Tohidi, E., Soleymani, F.: A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals. Appl. Math. Comp. 219, 482–497 (2012)

    Article  MathSciNet  Google Scholar 

  6. Biçer, G.G., Öztürk, Y., Gülsu, M.: Numerical approach for solving linear Fredholm integro-differential equation with piecewise intervals by Bernoulli polynomials. Inter. J. Comp. Math. 95, 2100–2111 (2018)

    Article  MathSciNet  Google Scholar 

  7. Acar, N.İ, Daşçıoğlu, A.: A projection method for linear Fredholm-Volterraintegro differential equations. J. Taibah Univ. Sci. 13(1), 644–650 (2019)

    Article  Google Scholar 

  8. Kürkçü, Ö.K., Aslan, E., Sezer, M.: A novel collocation method based on residual error analysis for solving integro differential equations using hybrid Dickson and Taylor polynomials. Sains Malaysiana 46, 335–347 (2017)

    Article  Google Scholar 

  9. Yüksel, G., Gülsu, M., Sezer, M.: A Chebyshev polynomial approach for high-order linear Fredholm-Volterra integro-differential equations. GU J Sci. 25, 393–401 (2012)

    Google Scholar 

  10. Ebrahimi, N., Rashidinia, J.: Spline collocation for Fredholm and Volterra integro-differential equations. Int. J. Math. Model. Comput. 4(3), 289–298 (2014)

    Google Scholar 

  11. Kürkçü, Ö.K., Ersin, A., Sezer, M.: A numerical approach with error estimation to solve general integro-differential difference equations using Dickson polynomials. Appl. Math. Comput. 276, 324–339 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Gümgüm, S., Baykuş, N., Savaşaneril, N., Kürkçü, Ö., Sezer, M.: A numerical technique based on Lucas polynomials together with standard and Chebyshev-Lobatto collocation points for solving functional integro-differential equations involving variable delays. Sakarya Univ. J. Sci. 22(6), 1659–1668 (2018)

    Google Scholar 

  13. Kurt, N., Sezer, M.: Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients. J. Franklin Inst. 345, 839–850 (2008)

    Article  MathSciNet  Google Scholar 

  14. Reutskiy, S.Y.: The backward substitution method for multipoint problems with linear Volterra-Fredholm integro-differential equations of the neutral type. J. Comput. Appl. Math. 296, 724–738 (2016)

    Article  MathSciNet  Google Scholar 

  15. Dehghan, M., Shakeri, F.: Solution of an integro-differential equation arising in oscillating magnetic field using He’s homotopy perturbation method. Prog. Electromagnet. Res. PIER 78, 361–376 (2008)

    Article  Google Scholar 

  16. Kürkçü, Ö.K.: A numerical method with a control parameter for integro differential delay equations with state dependent bounds via generalized Mott polynomials. Math. Sci. 14, 43–52 (2020)

    Article  MathSciNet  Google Scholar 

  17. Gürbüz, B., Sezer, M., Güler, C.: Laguerre collocation method for solving Fredholm integro-differential equations with functional arguments. J. Appl. Math. 682398 (2014)

  18. Gülsu, M., Sezer, M.: Taylor collocation for the solution of systems of high-order linear Fredholm-Volterraintegro-differential equations. Int. J. Comput. Math. 83, 429–448 (2006)

    Article  MathSciNet  Google Scholar 

  19. Sahu, P.K., Saha Ray, S.: Numerical solutions for the system of Fredholm integral equations of second kind by a new approach involving semiorthogonal B-spline wavelet collocation method. Appl. Math. Comput. 234, 368–379 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Shahmorad, S.: Numerical solution of the general form linear Fredholm-Volterra integro differential equations by the Tau method with an error estimation. App. Math. Comput. 167, 1418–1429 (2005)

    Article  MathSciNet  Google Scholar 

  21. Turkyilmazoglu, M.: An effective approach for numerical solutions of high-order Fredholm integro-differential equations. Appl. Math. Comput. 227, 384–398 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC, New York (2003)

    MATH  Google Scholar 

  23. Vanani, S.K., Aminataei, A.: Operational Tau approximation for a general class fractional integro-differential equations. Comp. Appl. Math. 30(3), 655–674 (2011)

    Article  MathSciNet  Google Scholar 

  24. Öztürk, Y., Gülsu, M.: An operational matrix method for solving Lane-Emden equations arising in astrophysics. Math. Methods App. Sci. 37, 2227–2235 (2014)

    Article  MathSciNet  Google Scholar 

  25. Babolian, E., Fattahzadeh, F.: Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comp. 188, 417–425 (2007)

    Article  MathSciNet  Google Scholar 

  26. Saadatmandi, A.: Mehdi Dehghan, A new operational matrix for solving fractional-order differential equations. Comp. Math. Appl. 59, 1326–1336 (2010)

    Article  Google Scholar 

  27. Öztürk, Y.: Numerical solution of systems of differential equations using operational matrix method with Chebyshev polynomials. J. Taibah Uni. Scie. 12(2), 155–162 (2018)

    Article  Google Scholar 

  28. Öztürk, Y., Gülsu, M.: Numerical solution of Abel equation using operational matrix method with Chebyshev polynomials. Asian-Eur. J. Math. 10(3), 175053 (2017)

    Article  MathSciNet  Google Scholar 

  29. Öztürk, Y., Gülsu, M.: An operational matrix method for solving a class of nonlinear Volterra integro-differential equations by operational matrix method. Inter. J. Appl. Comput. Math. 3, 3279–3294 (2017)

    Article  MathSciNet  Google Scholar 

  30. Rivlin, T.J.: Introduction to the Approximation of Functions. London (1969)

  31. Body, J.P.: Chebyshev and fourier spectral methods. University of Michigan, New York (2000)

    Google Scholar 

  32. Epperson, J.F.: An Introduction to Numerical Methods and Analysis. Wiley & Sons, Inc., Hoboken, New Jersey (2013)

    MATH  Google Scholar 

  33. Gülsu, M., Öztürk, Y.: On the numerical solution of linear Fredholm-Volterra integro differential difference equations with piecewise intervals. Appl. Appl. Math. Int. J. 7(2), 556–570 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Shang, X., Han, D.: Application of the variational iteration method for solving n-th order integro differential equations. J. Comput. Appl. Math. 234, 1442–1447 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Gülsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, Y., Gülsu, M. An operational matrix method to solve linear Fredholm–Volterra integro-differential equations with piecewise intervals. Math Sci 15, 189–197 (2021). https://doi.org/10.1007/s40096-021-00401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00401-9

Keywords

Navigation