Skip to main content
Log in

Wellposedness and regularity estimates for stochastic Cahn–Hilliard equation with unbounded noise diffusion

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

In this article, we consider the one dimensional stochastic Cahn–Hilliard equation driven by multiplicative space-time white noise with diffusion coefficient of sublinear growth. By introducing the spectral Galerkin method, we obtain the well-posedness of the approximated equation in finite dimension. Then with help of the semigroup theory and the factorization method, the approximation processes are shown to possess many desirable properties. Further, we show that the approximation process is strongly convergent in a certain Banach space with an explicit algebraic convergence rate. Finally, the global existence and regularity estimates of the unique solution process are proven by means of the strong convergence of the approximation process, which fills a gap on the global existence of the mild solution for stochastic Cahn–Hilliard equation when the diffusion coefficient satisfies a growth condition of order \(\alpha \in (\frac{1}{3},1).\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

this manuscript has no associated data.

References

  1. Antonopoulou, D.C., Blömker, D., Karali, G.D.: Front motion in the one-dimensional stochastic Cahn–Hilliard equation. SIAM J. Math. Anal. 44(5), 3242–3280 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonopoulou, D.C., Karali, G., Millet, A.: Existence and regularity of solution for a stochastic Cahn–Hilliard/Allen–Cahn equation with unbounded noise diffusion. J. Differ. Equ. 260(3), 2383–2417 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cahn, J.W., Hilliard, J.E.: Free energy for a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2, 258–267 (1958)

    Article  MATH  Google Scholar 

  4. Cardon-Weber, C.: Cahn–Hilliard stochastic equation: existence of the solution and of its density. Bernoulli 7(5), 777–816 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cerrai, S.: Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Probab. Theory Relat. Fields 125(2), 271–304 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cox, S., Hutzenthaler, M., Jentzen, A.: Local lipschitz continuity in the initial value and strong completeness for nonlinear stochastic differential equations. arXiv:1309.5595

  7. Cui, J., Hong, J.: Absolute continuity and numerical approximation of stochastic Cahn–Hilliard equation with unbounded noise diffusion. J. Differ. Equ. 269(11), 10143–10180 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cui, J., Hong, J., Liu, Z.: Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations. J. Differ. Equ. 263(7), 3687–3713 (2017)

    Article  MATH  Google Scholar 

  9. Cui, J., Hong, J., Liu, Z., Zhou, W.: Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations. J. Differ. Equ. 266(9), 5625–5663 (2019)

    Article  MATH  Google Scholar 

  10. Cui, J., Hong, J., Sun, L.: On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete Contin. Dyn. Syst. Ser. B 24(12), 6837–6854 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Cui, J., Hong, J., Sun, L.: Strong convergence of full discretization for stochastic Cahn–Hilliard equation driven by additive noise. SIAM J. Numer. Anal. 59(6), 2866–2899 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Prato, G., Debussche, A.: Stochastic Cahn–Hilliard equation. Nonlinear Anal. 26(2), 241–263 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  14. Debussche, A., Goudenège, L.: Stochastic Cahn–Hilliard equation with double singular nonlinearities and two reflections. SIAM J. Math. Anal. 43(3), 1473–1494 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eidelman, S.D., Zhitarashu, N.V.: Parabolic boundary value problems, volume 101 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel (1998). Translated from the Russian original by Gennady Pasechnik and Andrei Iacob

  16. Engel, K.J., Nagel, R.: One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt

  17. Kruse, R.: Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Lecture Notes in Mathematics, vol. 2093. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  18. Novick-Cohen, A., Segel, L.A.: Nonlinear aspects of the Cahn–Hilliard equation. Phys. D 10(3), 277–298 (1984)

    Article  MathSciNet  Google Scholar 

  19. Peszat, S., Zabczyk, J.: Stochastic partial differential equations with Lévy noise, volume 113 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2007). An evolution equation approach

  20. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)

    MATH  Google Scholar 

  21. Stein, E.M., Shakarchi, R.: Functional analysis, volume 4 of Princeton Lectures in Analysis. Princeton University Press, Princeton (2011). Introduction to further topics in analysis

  22. Stewart, H.B.: Generation of analytic semigroups by strongly elliptic operators under general boundary conditions. Trans. Am. Math. Soc. 259(1), 299–310 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. van Neerven, J., Veraar, M.C., Weis, L.: Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal. 255(4), 940–993 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Professor Yaozhong Hu for his helpful discussions and suggestions. The author also would like to thank the anonymous referees who provided useful and detailed comments to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (Nos. 91630312, 91530118, 11021101 and 11290142). The research of J. C. is partially supported by the Hong Kong Research Grant Council ECS Grant 25302822, start-up funds (P0039016, P0041274) from Hong Kong Polytechnic University and the CAS AMSS-PolyU Joint Laboratory of Applied Mathematics.

Appendix

Appendix

Proof of (2.4).

Proof

Thanks to the series expansion \(S(t)v=\sum _{k=1}^{\infty }e^{-\lambda _k^2 t}\langle v,e_k\rangle e_k\), using the fact that \(|\int _{\mathcal O}e_k(x) dx|\le \frac{C}{k},\) and \(\int _{c_0}^{\infty } e^{-x^4t} x^{-1}dx\le C(c_0)<\infty \) for any \(c_0>0\), we have that \(\Vert S(t)v\Vert _{L^{\infty }}\le C\Vert v\Vert _{L^\infty }\) and \(\Vert S(t)v\Vert _{L^{1}}\le C\Vert v\Vert _{L^1}.\) By using the Riesz–Thorin interpolation theorem (see e.g. [21]), it follows that for \(q\ge 1,\)

$$\begin{aligned} \Vert S(t)v\Vert _{L^q}\le C \Vert v\Vert _{L^q}. \end{aligned}$$
(8.1)

We first show that the contractivity property (2.4) holds for the case \(1\le p\le 2.\) When \(p=1,\) by using Minkowski’s inequality and Hölder’s inequality,

$$\begin{aligned}&\Vert S(t)v\Vert _{L^\infty }\le \sum _{k=1}^{\infty } e^{-\lambda _k^2t} |\langle v,e_k\rangle | \Vert e_k\Vert _{L^\infty } \le C t^{-\frac{1}{4}}\Vert v\Vert _{L^1}, \end{aligned}$$

where we use the fact that \(\sum _{k=1}^{\infty }e^{-\lambda _k^2 t}\le Ct^{-\frac{1}{4}}.\) By (8.1), the above estimate and an interpolation argument, it follows that (2.4) holds for \(p=1, q\ge 1\). Similarly, by using Hölder’s inequality, for \(p=2,\) we obtain that

$$\begin{aligned} \Vert S(t)v\Vert _{L^\infty }&\le \sum _{k=1}^{\infty } e^{-\lambda _k^2t} |\langle v,e_k\rangle | \Vert e_k\Vert _{L^\infty }\\&\le C\Big (\sum _{k=1}^{\infty } e^{-2\lambda _k^2t}\Big )^{\frac{1}{2}} \sum _{k=1}^{\infty } |\langle v,e_k\rangle |^2\le C t^{-\frac{1}{8} }\Vert v\Vert . \end{aligned}$$

Thus, by (8.1) and interpolation arguments, we also have (2.4) in the case of \(p=2, q\ge 2.\) By using the Riesz–Thorin interpolation theorem (see e.g. [21]), we could get (2.4) for \(1\le p\le 2,q \ge p.\) To show the case that \(q\ge p>2,\) we use the dual form of \(L^q\) norm. In fact, according to the self-adjoint property of S(t),  it follows that \(\Vert S(t)v\Vert _{L^q}=\sup \limits _{\Vert w\Vert _{L^{q'}}\le 1} \Big |\langle S(t)v,w\rangle \Big |\), where \(\frac{1}{q}+\frac{1}{q'}=1.\) Moreover, using Hölder’s inequality and (2.4) for \(1\le p'\le 2,q' \le p',\) we obtain that for \(\frac{1}{p}+\frac{1}{p'}=1,\)

$$\begin{aligned} \Vert S(t)v\Vert _{L^q}&=\sup \limits _{\Vert w\Vert _{L^{q'}}\le 1} \Big |\langle S(t)v,w\rangle \Big |\\&\le \sup \limits _{\Vert w\Vert _{L^{q'}}\le 1} \Vert v\Vert _{L^p}\Vert S(t)w\Vert _{L^{p'}}\\&\le C \sup \limits _{\Vert w\Vert _{L^{q'}}\le 1} \Vert v\Vert _{L^p}t^{\frac{1}{4}(\frac{1}{q'}-\frac{1}{p'})}\Vert w\Vert _{L^{q'}}\\&\le C t^{\frac{1}{4}(\frac{1}{p}-\frac{1}{q})} \Vert v\Vert _{L^p}, \end{aligned}$$

which completes the proof for any \(1\le p\le q\le \infty .\) Since for any \(t>0,\) \(v\in L^p\), \(S(t)v\in E,\) we also have

$$\begin{aligned} \Vert S(t)v\Vert _{E}\le Ct^{-\frac{1}{4p}}\Vert v\Vert _{L^{p}}. \end{aligned}$$

\(\square \)

The proof of Proposition 5.1in the case that \(\gamma \le \frac{1}{2}\):

Following the steps in the proof of Proposition 5.1, it suffices to show that \(Y=X-Z\) satisfies

$$\begin{aligned} Y(t)=S(t)X(0)-\int _0^tS(t-s)AF(X(s))ds. \end{aligned}$$

More precisely, we will show that \(S(t)X^N(0)\) converges to S(t)X(0) and that \(-A\int _0^tS(t-s)P^NF(X^N(s))ds\) converges to \(-A\int _0^tS(t-s)F(X(s))ds\). To this end, we need the following convergence result.

Proposition 8.1

Under the condition of Proposition 5.1, \(\{X^{N}\}_{N\in \mathbb N^+}\) is a Cauchy sequence in \( L^{2p}(\Omega ; L^{\kappa _1}([0,T];E))\cap L^{2p}(\Omega ; L^{\kappa _2}([0,T];L^6))\), where \(2\le \kappa _1 <8\) and \(2 \le \kappa _2<12.\) Furthermore, there exists \(\widetilde{\tau }\in (0,\max (\frac{\gamma }{2},\frac{3}{4}))\) such that

$$\begin{aligned} \Vert X^N-X^M\Vert _{L^{2p}(\Omega ; L^{\kappa _1}([0,T];E))}+\Vert X^N-X^M\Vert _{L^{2p}(\Omega ; L^{\kappa _2}([0,T];L^6))}\le C \lambda _N^{-\widetilde{\tau }}, \end{aligned}$$

where \(M\ge N.\)

Proof

The proof of the convergence in \( L^{2p}(\Omega ; L^{\kappa _1}([0,T];E))\) and \(L^{2p}(\Omega ;\) \(L^{\kappa _2} ([0,T];L^6))\) are similar. We only present the details on the convergence in \(L^{2p}(\Omega ; L^{\kappa _1}([0,T];E))\). Since \(X^N=Y^N+Z^N\), it suffices to show the convergence of \(Y^N\) and \(Z^N\) respectively. Let \(M\ge N\). Then by using the arguments in the proof of Lemma 3.2, we have that for \(\frac{3}{8}-\frac{\alpha }{4}>\alpha _1>\frac{1}{8}+\frac{1}{p}\) with a large enough \(p\ge 1,\) and a small enough \(\epsilon >0\),

$$\begin{aligned}&\mathbb E\Big [\sup _{t\in [0,T]}\Vert Z^N(t)-Z^M(t)\Vert _E^{2p}\Big ] \\&\le C_p\mathbb E\Big [\sup _{t\in [0,T]}\Vert Z^N(t)-P^NZ^M(t)\Vert _E^{2p}\Big ] +C_p\mathbb E\Big [\sup _{t\in [0,T]}\Vert (I-P^N)Z^M(t)\Vert _E^{2p}\Big ]\\&\le C(p,T) \int _0^T \mathbb E\Big [\Big (\int _0^{{t}} ({t}-r)^{-2\alpha _1-\frac{1}{4}}\Vert X^N(r)-X^M(r)\Vert ^{2}dr\Big )^{p}\Big ] dt\\&\quad +C(p,T) \int _0^T \mathbb E\Big [\Big (\int _0^{{t}} ({t}-r)^{-2\alpha _1-\frac{1}{4}-\epsilon } \lambda _N^{-2\epsilon } (1+\Vert X^M(r)\Vert ^{2})dr\Big )^{p}\Big ]dt, \end{aligned}$$

where we have used the following estimate

$$\begin{aligned} \Vert S(\frac{t-r}{2})(I-P^N) u\Vert&\le \Vert S(\frac{t-r}{2})A^{\epsilon }\Vert \Vert (I-P^N) A^{-\epsilon } u\Vert \\&\le C(t-r)^{-\frac{\epsilon }{2}} \lambda _N^{-\epsilon }\Vert u\Vert . \end{aligned}$$

Lemma 3.3 and Theorem 4.1 lead to

$$\begin{aligned}&\mathbb E\Big [\sup _{t\in [0,T]}\Vert Z^N(t)-Z^M(t)\Vert _E^{2p}\Big ] \le C(T,X_0,p) (\lambda _{N}^{-\tau p}+\lambda _N^{-2\epsilon p}) \end{aligned}$$
(8.2)

where \(\tau <\gamma .\) Since \(C([0,T];E)\subset L^{\kappa _1}([0,T];E)\), it remains to prove the convergence \(Y^N\). The mild form \(Y^N-Y^M\), together with (2.4), (2.3) and (4.2), yields that for any \(\gamma _2<\frac{3}{4},\)

$$\begin{aligned}&\Vert Y^N(t)-Y^M(t)\Vert _E \\&\le \Vert S(t)(I-P^N)X^M(0)\Vert _E +\Big \Vert \int _0^t S(t-s)P^MA(I-P^N)F(X^M(s))ds\Big \Vert _E\\&\quad + \Big \Vert \int _0^t S(t-s) P^N A(F(X^M(s))-F(X^N(s)))ds \Big \Vert _E\\&\le C t^{-\frac{1}{8}} \lambda _N^{-\frac{\gamma }{2}} \Vert X^M(0)\Vert _{\mathbb H^{\gamma }}\\&\quad +C \int _0^t (t-s)^{-\frac{5}{8}-\frac{\gamma _2}{2}} \lambda _N^{-\gamma _2} (1+ \Vert X^M(s)\Vert _{L^6}^3)ds\\&\quad +C \int _0^t (t-s)^{-\frac{5}{8}}\big (1+\Vert X^N(s)\Vert _E^2+\Vert X^M(s)\Vert _E^2\big )ds \sup _{s\in [0,t]}\Vert X^N(s)-X^M(s)\Vert . \end{aligned}$$

Using Proposition 3.2 and Theorem 4.1, we obtain that for \(\gamma _2<\frac{3}{4},\) \(\tau <\gamma ,\)

$$\begin{aligned}&\mathbb E\Big [ \Big (\int _0^T\Vert Y^N(t)-Y^M(t)\Vert _E^{\kappa _1}dt\Big )^{\frac{2p}{\kappa _1}}\Big ]\\&\le C(\lambda _N^{-2\gamma _2 p}+\lambda _N^{-\tau p}) + C \lambda _N^{- \gamma p} \Vert X^M(0)\Vert _{\mathbb H^{\gamma }}^{2p} \mathbb E\Big [\Big (\int _0^T t^{-\frac{1}{8} \kappa _1} dt\Big )^{2p}\Big ]\\&\le C(\lambda _N^{-2\gamma _2 p}+\lambda _N^{-\tau p}+\lambda _N^{-\gamma p}). \end{aligned}$$

Thus, \(\{Y^N\}_{N\in \mathbb N^+}\) is a Cauchy sequence in \(L^{2p}(\Omega ; L^{\kappa _1}([0,T];E))\) and \(\widetilde{\tau }\le \max (\epsilon ,\frac{\tau }{2}, \frac{3}{4})\) This, together with the convergence of \(Z^N\) in \(L^{2p}(\Omega ; L^{\kappa _1}([0,T];E))\), implies that \(\{X^N\}_{N\in \mathbb N^+}\) forms a Cauchy sequence in \(L^{2p}(\Omega ; L^{\kappa _1}([0,T];E))\). \(\square \)

Since \(S(t)X^N(0)\) is convergent to S(t)X(0), we only need to estimate

$$\begin{aligned} Err_1(t):= \Big \Vert \int _0^t S(t-s)A(F(X(s))-P^NF(X^N(s)))ds\Big \Vert . \end{aligned}$$

Applying (2.3) and Theorem 4.1, we obtain that for \(\gamma _3\in (0,\frac{1}{2}),\)

$$\begin{aligned} Err_1(t)&\le \Big \Vert \int _0^t S(t-s)A(I-P^N) F(X(s)ds\Big \Vert \\&\quad + \Big \Vert \int _0^t S(t-s) AP^N( F(X^N(s))- F(X(s)) )ds \Big \Vert \\&\le C\int _0^t (t-s)^{-\frac{1}{2} -\gamma _3} \lambda _N^{-2\gamma _3}(1+\Vert X(s)\Vert ^3_{L^6})ds\\&\quad +C \int _0^t (t-s)^{-\frac{1}{2}}(1+\Vert X^N(s)\Vert ^{2}_E+\Vert X(s)\Vert ^2_E) \Vert X^N(s)-X(s)\Vert ds. \end{aligned}$$

Hölder’s inequality, together with Proposition 8.1, yields that for \(\tau <\gamma \), \(\gamma _3\in (0,\frac{1}{2}),\) \(3l<12,\) \((\frac{1}{2} +\gamma _3)\frac{l}{l-1}<1\) and \(2l_1<8\), \(\frac{l_1}{2(l_1-1)}<1,\)

$$\begin{aligned}&\mathbb E\Big [ \sup _{t\in [0,T]}\Vert Err_1(t)\Vert ^{2p}\Big ]\\&\le C \mathbb E\Big [ \sup _{t\in [0,T]} \Big (\int _0^t (t-s)^{-\frac{1}{2} -\gamma _3} \lambda _N^{-2\gamma _3}(1+\Vert X(s)\Vert ^3_{L^6})ds\Big )^{2p} \Big ]\\&\quad +C \mathbb E\Big [\sup _{t\in [0,T]}\Big (\int _0^t (t-s)^{-\frac{1}{2}} (1+\Vert X^N(s)\Vert ^{2}_E+\Vert X(s)\Vert ^2_E) ds\Big )^{2p} \sup _{t\in [0,T]}\Vert X^N(s)-X(s)\Vert ^{2p}\Big ]\\&\le C\lambda _N^{{-4\gamma _3}p} \mathbb E\Big [ \sup _{t\in [0,T]} \Big (\int _0^t (t-s)^{-\frac{1}{2} -\gamma _3} (1+\Vert X(s)\Vert ^3_{L^6})ds\Big )^{2p} \Big ]\\&\quad +C \lambda _N^{-\tau p} \Big (\mathbb E\Big [\sup _{t\in [0,T]}\Big ( \int _0^t (t-s)^{-\frac{1}{2}}(1+\Vert X^N(s)\Vert ^{2}_E+\Vert X(s)\Vert ^2_E) ds\Big )^{4p}\Big ]\Big )^{\frac{1}{2}} \\&\le C\lambda _N^{-{4\gamma _3}p} \Big (\mathbb E\Big [ \sup _{t\in [0,T]} \Big (\int _0^t (t-s)^{(-\frac{1}{2} -\gamma _3)\frac{l}{l-1}}\Big )^{4p\frac{l-1}{l}} \Big (\int _0^T (1+\Vert X(s)\Vert ^{3l}_{L^6})ds\Big )^{\frac{4p}{l}} \Big ]\Big )^{\frac{1}{2}}\\&\quad +C \lambda _N^{-\tau p}\sup _{t\in [0,T]}\Big ( \int _0^t (t-s)^{-\frac{l_1}{2(l_1-1)}} ds \Big )^{2p\frac{l_1-1}{l_1}} \Big (\mathbb E\Big [\Big (\int _0^T (1+\Vert X^N(s)\Vert ^{2 l_1}_E+\Vert X(s)\Vert ^{2 l_1}_E) ds\Big )^{\frac{4p}{l_1}}\Big ]\Big )^{\frac{1}{2}} \\&\le C(\lambda _N^{-{4\gamma _3}p}+\lambda _N^{-\tau p}), \end{aligned}$$

which implies that Y satisfies \( Y(t)=S(t)X(0)-\int _0^tS(t-s)AF(X(s))ds\). This, together with the convergence of \(Z^N\) to Z, shows that X is the global mild solution.

Exponential integrability of the mild solution

Corollary 8.1

Let \(X_0\in \mathbb H^{\gamma }, \gamma \in (0,\frac{3}{2}).\) There exist \(\beta >0\), \(c>0\) such that for \(t\in [0,T]\),

$$\begin{aligned}&\mathbb E\Big [\exp \Big (\frac{1}{2}e^{-\beta t}\Vert X(t)\Vert _{\mathbb H^{-1}}^2+c\int _0^t e^{-\beta s}\Vert X(s)\Vert _{L^4}^4ds+c\int _0^te^{-\beta s}\Vert \nabla X(s)\Vert ^2ds\Big )\Big ]\nonumber \\&\le C(X_0,T). \end{aligned}$$
(8.3)

Proof

From the Gagliardo–Nirenberg inequality

$$\begin{aligned} \Vert u\Vert _{L^4}\le C\Vert \nabla u\Vert _{L^2}^{\frac{1}{4}}\Vert u\Vert ^{\frac{3}{4}}+C\Vert u\Vert , \end{aligned}$$

and Young’s inequality, it follows that

$$\begin{aligned}&\int _0^t\Vert X^N(s)-X(s)\Vert ^4_{L^4}ds\\&\le C\int _0^t\Vert \nabla (X^N(s)-X(s))\Vert ^2ds +C\int _0^t (1+\Vert X^N(s)-X(s)\Vert ^6)ds. \end{aligned}$$

We first claim that

$$\begin{aligned} \lim _{N\rightarrow \infty }\Vert X^N-X\Vert _{L^{2}(\Omega ; L^{2}([0,t];\mathbb H^1))}+\lim _{N\rightarrow \infty }\Vert X^N-X\Vert _{C([0,t];L^{6}(\Omega ; \mathbb H))}=0. \end{aligned}$$
(8.4)

The estimate of the second term is similar to that of Proposition 8.1. To show the convergence of \(\Vert X^N-X\Vert _{L^{2}(\Omega ; L^{2}([0,t];\mathbb H^1))}\), one needs to recall that from the proof of Proposition 4.1 and taking \(p=1,\) it holds that

$$\begin{aligned}&\mathbb E[\Vert X^N(t)-P^NX^M(t)\Vert _{\mathbb H^{-1}}^{2}]+2\mathbb E[\int _0^t\Vert X^N(s)-P^NX^{M}(s)\Vert _{\mathbb H^1}^2ds]\\&\le C(T,X_0,p) \lambda _{N}^{-\gamma }. \end{aligned}$$

For convenience, we assume that \(\sup \limits _{N\in \mathbb N^+}\Vert X^N_0\Vert _E\le C(X_0)\) or \(\gamma >\frac{1}{2}\) here. Otherwise, one needs to deal with the singularity appearing in each integral term via a tedious and technical calculus. Next, it remains to estimate \(\mathbb E[\int _0^t\Vert (I-P^N)X^{M}(s)\Vert _{\mathbb H^1}^2ds].\) Indeed, the a priori estimates of \(X^M\) and \(Z^M\), \(\sum _{i=1}^{\infty } e^{-\lambda _i^2t} \le Ct^{-\frac{1}{4}}\), (2.3) and (5.4) yield that

$$\begin{aligned}&\mathbb E\Big [\int _0^t\Vert (I-P^N)X^{M}(s)\Vert _{\mathbb H^1}^2ds\Big ]\\&\le \mathbb E\Big [\int _0^t\Vert (I-P^N) S(s)X^M(0)\Vert _{\mathbb H^1}^2ds \Big ]\\&\quad +\mathbb E\Big [\int _0^t\Vert (I-P^N) \int _0^s S(s-r)A F(X^M(r))dr\Vert _{\mathbb H^1}^2ds \Big ] \\&\quad +\mathbb E\Big [\int _0^t\Vert (I-P^N) Z^M(s)\Vert _{\mathbb H^1}^2ds \Big ]\\&\le C \lambda _N^{-2\epsilon }\Big (\int _0^t s^{-\frac{1}{2}-\epsilon }ds+\int _0^t(\int _0^s (s-r)^{-\frac{3}{4}-\epsilon }dr)^2ds+\int _0^t\int _0^s (s-r)^{-\frac{3}{4}-\epsilon }drds\Big )\\&\le C \lambda _N^{-2\epsilon }. \end{aligned}$$

The above claim (8.4) implies that

$$\begin{aligned} \lim _{N\rightarrow \infty }\Vert X^N-X\Vert _{L^{4}(\Omega ; L^{4}([0,t];L^4))}=0. \end{aligned}$$

Take a subsequence \(X^{N_k}\) of \(X^N\) such that

$$\begin{aligned} X^{N_k} \rightarrow X \; \text {in} \; C([0,T];\mathbb H^{-1})\cap L^2([0,T];\mathbb H^1) \cap L^4([0,T];L^4), \text {a.s.} \end{aligned}$$

Thus, to prove (8.3), by using Fatou’s lemma, it suffices to show the uniform boundedness of the exponential moment for \(X^N\), i.e.,

$$\begin{aligned} \mathbb E\Big [\exp \Big (\frac{1}{2}e^{-\beta t}\Vert X^N(t)\Vert _{\mathbb H^{-1}}^2+c\int _0^t e^{-\beta s}\Vert X^N(s)\Vert _{L^4}^4ds+c\int _0^te^{-\beta s}\Vert \nabla X^N(s)\Vert ^2ds\Big )\Big ] \end{aligned}$$

since the terms inside the expectation converges to those of X,  a.s.

Denote \(\mu (x)=-A^2x-AP^NF(x)\) and \(\sigma (x)=P^NG(x)I_{\mathbb H}\) and \(U(x)=\frac{1}{2}\Vert x\Vert _{\mathbb H^{-1}}^2\), where \(x\in P^N(\mathbb H)\). Using (2.5), the Lipschitz continuity of G, and applying Hölder’s and Young’s inequality, we get for a small \(\epsilon >0,\)

$$\begin{aligned}&\langle DU(x),\mu (x)\rangle +\frac{1}{2}\text {tr}[D^2U(x)\sigma (x)\sigma ^*(x)]+\frac{1}{2} \Vert \sigma (x)^*DU(x)\Vert ^2\\&=\langle x, -A^2x{-A}F(x)\rangle _{\mathbb H^{-1}} +\frac{1}{2}\sum _{i\in \mathbb N^+} \Vert P^N(G(x)e_i)\Vert _{\mathbb H^{-1}}^2 +\frac{1}{2} \sum _{i\in \mathbb N^+}\langle x,G(x)e_i\rangle _{\mathbb H^{-1}}^2\\&\le -(1-\epsilon )\Vert \nabla x\Vert ^2-(4c_4-\epsilon )\Vert x\Vert _{L^4}^4+\epsilon \Vert x\Vert _{\mathbb H^{-1}}^2+C(\epsilon ). \end{aligned}$$

Using the exponential integrability lemma in [8] and taking \(\beta =\epsilon \), we have

$$\begin{aligned}&\mathbb E\Big [\exp \Big (e^{-\beta t}\frac{1}{2}\Vert X^N(t)\Vert _{\mathbb H^{-1}}^2+(4c_4-\epsilon )\int _0^t e^{-\beta s}\Vert X^N(s)\Vert _{L^4}^4ds\\&\quad +(1-\epsilon )\int _0^te^{-\beta s}\Vert \nabla X^N(s)\Vert ^2ds\Big )\Big ]\le C(X_0,T,\epsilon ), \end{aligned}$$

which completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Hong, J. Wellposedness and regularity estimates for stochastic Cahn–Hilliard equation with unbounded noise diffusion. Stoch PDE: Anal Comp 11, 1635–1671 (2023). https://doi.org/10.1007/s40072-022-00272-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-022-00272-8

Keywords

Mathematics Subject Classification

Navigation