Skip to main content
Log in

Effect of Process Parameters on Particle Size and Morphology of Telmisartan in Anti-solvent Crystallization

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

This study aimed to reduce the particle size of the poorly water-soluble drug telmisartan up to nano-range by anti-solvent crystallization method. In the present experiments, dimethyl sulfoxide (DMSO) as a solvent and deionized water as an anti-solvent have been utilized. The study was carried out using important operating parameters, namely drug loading, volume of anti-solvent, injection rate, and crystallization temperature. With a higher loading of the drug at 15 mg/ml, drug particle of (334 nm) size was achieved. With a higher volume of anti-solvent, further reduction in particle size (329 nm) was achieved. Smaller particles having (320 nm) size were achieved when injection rate was maintained at 10 ml/min and a lower crystallization temperature. Recrystallized telmisartan nanoparticles were characterized using dynamic light scattering, scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The studies revealed that the recrystallized telmisartan was in a crystalline state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Bajaj, M.R.P. Rao, A. Pardeshi, D. Sali, AAPS PharmSciTech 13, 1331 (2012)

    Article  Google Scholar 

  2. M. Xu, J. Song, Y. Liang, J. Pharmaceut. Biomed. 34, 681 (2004)

    Article  Google Scholar 

  3. J. Stangier, J. Schmid, D. Turck, H. Switek, A. Verhagen, P.A.M. Peeters, S.P. van Marle, W.J. Tamminga, A.E. Sollie, J.H.G. Jonkman, J. Clin. Pharmacol. 40, 1322 (2000)

    Google Scholar 

  4. E. Cagigal, L. Gonzalez, R.M. Alonso, R.M. Jimenez, J. Pharmceut. Biomed. 26, 486 (2001)

    Google Scholar 

  5. Y. Lu, K. Park, Int. J. Pharm. 453, 198 (2013)

    Article  Google Scholar 

  6. M. Kaur, R.K. Bhatia, R.R.S. Pissurlenkar, E.C. Coutinho, U.K. Jain, O.P. Katare, R. Chandra, J. Madan, Carbohyd. Polym. 101, 614 (2014)

    Article  Google Scholar 

  7. M.E. Brewster, T. Loftsson, Adv. Drug Deliver. Rev. 59, 645 (2007)

    Article  Google Scholar 

  8. A.T.M. Serajuddin, Adv. Drug Deliver. Rev. 59, 603 (2007)

    Article  Google Scholar 

  9. P. Pandya, S. Gattani, P. Jain, L. Khirwal, S. Surana, AAPS PharmSciTech 9, 1247 (2008)

    Article  Google Scholar 

  10. K. Stoyanova, Z. Vinarov, A. Tcholakova, J. Drug Deliv. Sci. Technol. 36, 215 (2016)

    Google Scholar 

  11. S.P. Chaudhari, R.P. Dugar, J. Drug Deliv. Sci. Technol. 41, 77 (2017)

    Google Scholar 

  12. P. Tran, Y.-C. Pyo, D.-H. Kim, S.-E. Lee, J.-K. Kim, J.-S. Park, Pharmaceutics. 11, 132 (2019)

    Article  Google Scholar 

  13. H. Chen, C. Khemtong, X. Yang, X. Chang, J. Gao, Drug Discov. Today. 16, 354 (2011)

    Article  Google Scholar 

  14. M. Kakran, N.G. Sahoo, L. Li, Z. Judeh, Powder Technol. 237, 468 (2013)

    Article  Google Scholar 

  15. S. Pan, G. Takebe, M. Suzuki, H. Takamoto, J. Ge, C. Liu, M. Hiramatsu, Opt. Commun. 313, 512 (2014)

    Article  Google Scholar 

  16. R.S. Dhumal, S.V. Biradar, S. Yamamura, A.R. Paradkar, P. York, Eur. J. Pharm. Biopharm. 70, 109 (2008)

    Article  Google Scholar 

  17. J. Hao, Y. Gao, J. Zhang, Q. Li, Z. Zhao, J. Liu, AAPS PharmSciTech 16, 128 (2015)

    Article  Google Scholar 

  18. C.M. Keck, R.H. Muller, Eur. J. Pharm. Biopharm. 62, 3 (2006)

    Article  Google Scholar 

  19. Y. He, Y. Huang, Y. Cheng, Cryst. Growth Des. 10, 1024 (2010)

    Google Scholar 

  20. Q. Rao, Z. Qiu, D. Huang, T. Lu, Z.J. Zhang, D. Luo, P. Pan, L. Zhang, Y. Yiu, S. Guan, Q. Li, Eur. J. Pharm Sci. 128, 231 (2019)

    Article  Google Scholar 

  21. U. Bilati, E. Allemann, E. Doelker, Eur. J. Pharm. Sci. 24, 67 (2005)

    Article  Google Scholar 

  22. M.D. Luque de Castro, F. Priego-Capote, Ultrason. Sonochem. 14, 724 (2007)

    Article  Google Scholar 

  23. A.A. Thorat, S.V. Dalvi, Chem. Eng. J. 181, 2 (2012)

    Google Scholar 

  24. M.-W. Park, S.-D. Yeo, Separ. Sci. Technol. 45, 1402 (2010)

    Google Scholar 

  25. A. Vicosa, J.-J. Letourneau, F. Espitalier, M.I. Re, J. Cryst. Growth. 342, 80 (2012)

    Article  Google Scholar 

  26. S.-J. Park, S.-D. Yeo, Sep. Sci. Technol. 46, 1273 (2011)

    Article  Google Scholar 

  27. M.-W. Park, S.-D. Yeo, Chem. Eng. Res. Des. 90, 2202 (2012)

    Article  Google Scholar 

  28. H.-J. Kim, S.-D. Yeo, Chem. Eng. Res. Des. 97, 68 (2015)

    Article  Google Scholar 

  29. Z.Q. Yu, R.B.H. Tan, P.S. Chow, J. Cryst. Growth. 279, 488 (2005)

    Google Scholar 

  30. H. Teng, L. Chen, W.Y. Lee, Food Sci. Technol. Res. 23, 502 (2017)

    Article  Google Scholar 

  31. X. Zhou, X. Zhu, B. Wang, J. Li, Q. Liu, X. Gao, K.K. Sirkar, D. Chen, J. Membr. Sci. 564, 690 (2018)

    Article  Google Scholar 

  32. J.-H. An, A.N. Kiyonga, E.H. Lee, K. Jung, Curr. Comput. -Aided Drug Des. 9, 53 (2019)

    Google Scholar 

  33. P.H.-L. Tran, T.T.-D. Tran, J.-B. Park, D.H. Min, H.-G. Choi, H.-K. Han, Y.-S. Rhee, B.-J. Lee, Int. J. Pharm. 414, 48 (2011)

    Article  Google Scholar 

  34. M. Sangwai, P. Vavia, Int. J. Pharm. 453, 423 (2013)

    Article  Google Scholar 

  35. J. Park, W. Cho, K.-H. Cha, J. Ahn, K. Han, S.-J. Hwang, Int. J. Pharm. 441, 50 (2013)

    Article  Google Scholar 

  36. C. Sharma, M.A. Desai, S.R. Patel, Cryst. Res. Technol. 1800001, 9 (2018)

    Google Scholar 

  37. C. Desai, X. Meng, D. Yang, X. Wang, V. Akkunuru, S. Mitra, J. Cryst. Growth. 314, 353 (2011)

    Article  Google Scholar 

  38. B. Nassim, S.S.A. Mutaz, S.A. Hatim, Powder Technol. 16, 285 (2015)

    Google Scholar 

  39. Y. Dong, W.K. Ng, J. Hu, S. Shen, R.B.H. Tan, Powder Technol. 268, 424 (2014)

    Article  Google Scholar 

  40. D.-C. Kim, S-D Yeo. J. Supercrit. Fluids. 108, 103 (2016)

    Google Scholar 

  41. Y. Zu, W. Wu, X. Zhao, Y. Li, W. Wang, C. Zhong, Int. J. Pharm. 471, 336 (2014)

    Article  Google Scholar 

  42. B. Lv, C. Wang, J. Hou, P. Wang, L. Miao, Y. Li, Y. Ao, Y. Yang, G. You, Y. Xu, J. Nanopart. Res. 18(193), 12 (2016)

    Google Scholar 

  43. J.A. Dirksen, T.A. Ring, Chem. Eng. Sci. 46, 2389 (1991)

    Article  Google Scholar 

  44. S.-H. Kim, H.-J. Kim, S.-D. Yeo, J. Supercrit. Fluid. 85, 109 (2014)

    Article  Google Scholar 

  45. Y. Zhang, Z. Zhi, T. Jiang, J. Zhang, Z. Wang, S. Wang, J. Control Release. 145, 257 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjaykumar R. Patel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, C., Desai, M.A. & Patel, S.R. Effect of Process Parameters on Particle Size and Morphology of Telmisartan in Anti-solvent Crystallization. J. Inst. Eng. India Ser. E 102, 163–174 (2021). https://doi.org/10.1007/s40034-021-00210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-021-00210-8

Keywords

Navigation