Skip to main content
Log in

Improvement in Rheological, Safe Handling and Formulation Characteristics of Viscous Cypermethrin Through Co-inclusion in Urea

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

A steep improvement in rheological, safe handling and formulation characteristics of cypermethrin has been undertaken through co-inclusion in urea. The current investigation describes conversion of viscous cypermethrin into a three-component powder form that is easier to use and safer to handle. The bioactive compound is converted into urea co-inclusion complex in the presence of oleic acid. Insects will be exposed to insecticide only after co-inclusion complex of cypermethrin comes in contact with water in soil/crops following switching on of water sprinkling system in fields. This prevents direct ingestion, inhalation or dermal exposure of insecticides. Therefore, human beings dealing with toxic insecticide will not be exposed after its entrapment in urea hexagonal lattice. Cypermethrin is formulated into human guarded free flowing solids to facilitate ease in packaging/transportation/use. Cypermethrin urea co-inclusion complex (CYUCIC) formation was evidenced by XRD, DSC, FTIR and 1H-NMR techniques. Regression analysis on thermal data depicted gradual rise in heat of decomposition and better physical stability in CYUCICs with increase in relative fraction of RCG. CYUCIC complex revealed improved dissolution rate and uniform composition. Studies indicate insecticide–fertilizer amalgamation to be a fruitful approach for conversion of hazardous insecticide into human guarded formulation with improved dissolution profile, uniform composition and better flow properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agnihorti NP, Jain HK, Gajbhiye VT (1986) Persistence of some synthetic pyrethroid insecticides in soil, water and sediment-part I. J Entomol Res 10(2):147–151

    Google Scholar 

  2. Armenta S, Quintas G, Garrigues S, Guardia M (2005) A validated and fast procedure for FTIR determination of cypermethrin and chloropyrifos. Talanta 67(3):634–639

    Article  CAS  Google Scholar 

  3. Breckenridge CB, Holden L, Sturgess N, Weiner M, Sheets L, Sargent D, Soderlund DM, Choi JS, Symington S, Clark JM, Burr S, Ray D (2009) Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. Neurotoxicology 30(1):S17–S31. https://doi.org/10.1016/j.neuro.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  4. Brodman BW, Radell J (1967) X-ray powder diffraction patterns of some n-alkanone urea inclusion compounds. Sep Sci 2:139–142

    CAS  Google Scholar 

  5. Brown WL, Policello GA (2014) Antidrift composition. Patent application number WO2014018070 A1

  6. Carr RL (1965) Evaluating flow properties of solids. Chem Eng 72:163–168

    CAS  Google Scholar 

  7. Class TJ, Kintrup J (1991) Pyrethroids as household insecticides: analysis, indoor exposure and persistence. Fresenius J Anal Chem 340(7):446–453. https://doi.org/10.1007/BF00322420

    Article  CAS  Google Scholar 

  8. Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues and risk assessment indicators. Int J Environ Res Public Health 8(5):1402–1409. https://doi.org/10.3390/ijerph8051402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Das RN, Parajuli S (2006) Cypermethrin poisoning and anti-cholinergic medication—a case report. IJMU 1(2):42–44

    Google Scholar 

  10. Dhall M, Madan AK (2015) Simultaneous improvement in dissolution profile and content uniformity of lafutidine through co-inclusion in urea. J Incl Phenom Macrocycl Chem 82(3–4):335–350. https://doi.org/10.1007/s10847-015-0493-z

    Article  CAS  Google Scholar 

  11. Dhall M, Madan AK (2015) Studies on urea co-inclusion complexes of simvastatin for improvement of pharmaceutical characteristics. J Incl Phenom Macrocycl Chem 81(1–2):105–120. https://doi.org/10.1007/s10847-014-0439-x

    Article  CAS  Google Scholar 

  12. Dhall M, Madan AK (2016) Steep improvement in dissolution profile of ezetimbe through co-inclusion in urea. J Pharm Investig 46(5):433–451. https://doi.org/10.1007/s40005-016-0236-1

    Article  CAS  Google Scholar 

  13. Dhall M, Madan AK (2016) Conversion of viscous liquid malathion into free flowing solids through co-inclusion in urea for multiple benefits. J Incl Phenom Macrocycl Chem 86(1–2):135–151. https://doi.org/10.1007/s10847-016-0648-6

    Article  CAS  Google Scholar 

  14. Dhall M, Madan AK (2016) Urea complexes of chlorpyrifos, malathion, bifenthrin and cypermethrin for improving safe handling and other characteristics. Indian Patent No. 201611002986

  15. Dhall M, Madan AK (2017) Studies on urea co-inclusion complexes of ebastine for steep improvement in dissolution profile. Indian Drugs 54(8):42–53

    Google Scholar 

  16. Dhall M, Madan AK (2017) Thermal and other analytical studies on bifenthrin-urea co-inclusion complex—a human guarded insecticide formulation. J Therm Anal Calorim. https://doi.org/10.1007/s10973-016-6072-8

    Article  Google Scholar 

  17. Dhall M, Madan AK (2017) Preparation, characterization and evaluation of human guarded chlorpyrifos urea co-inclusion complexes. Indian J Pharm Sci 79(1):91–104

    Google Scholar 

  18. Dhall M, Madan AK (2017) Comparison of cyclodextrins and urea as hosts for inclusion of drugs. J Incl Phenom Macrocycl Chem 1:1. https://doi.org/10.1007/s10847-017-0748-y

    Article  CAS  Google Scholar 

  19. Durie RA, Harrison RJ (1962) Effect of urea-adduct formation and physical state on the infrared spectra of n-paraffin hydrocarbons. Spectrochem Acta 18:1505–1514

    Article  CAS  Google Scholar 

  20. Fischer PHH, McDowell CA (1960) The infrared absorption spectra of urea-hydrocarbon adduct. Can J Chem 38:187–193

    Article  CAS  Google Scholar 

  21. Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol 39(1):103–110

    Google Scholar 

  22. Harris KDM (1993) Solid state NMR. Nucl Magn Reson 22:230–260

    Article  CAS  Google Scholar 

  23. Harris KDM, Jonsen P (1989) 2H-NMR investigation of the dynamic behavior of n-hexadecane in its urea inclusion compound. Chem Phys Lett 154:593–598

    Article  CAS  Google Scholar 

  24. Hill AC (1998) Solid formulation. US 5837651 A

  25. Janghel EK, Rai JK, Rai MK, Gupta VK (2007) A new sensitive spectrophotometric determination of cypermethrin insecticide in environmental and biological samples. J Braz Chem Soc. https://doi.org/10.1590/s0103-50532007000300015

    Article  Google Scholar 

  26. Jubert AH, Alegre ML, Diez RP, Pomilio AB (2007) Vibrational spectra, NMR and theoretical studies of the enantiomers and rotamers of alpha-cypermethrin. Spectrochim Acta Part A Mol Biomol Spectrosc 66(4–5):1208–1221

    Article  Google Scholar 

  27. Keller WE (1948) Evidence of planar structure of urea. J Chem Phys 16:1003–1004

    Article  CAS  Google Scholar 

  28. Lawkowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam T174:49–170

    Google Scholar 

  29. Madan AK, Bajaj V (1994) A process for preparation of urea based inclusion compounds of vitamin E and its esters. Indian Patent 182620

  30. Madan AK, Grover PD (1993) A process for preparation of urea based inclusion compounds of vitamin A esters. Indian Patent 180627

  31. Madan AK, Thakral S (2010) Urea as an adductor for branched drug molecules. In: Fitzpatrick DW, Ulrich HJ (eds) Macrocyclic chemistry: new research developments, Chap. 18. Nova Science Publishers Inc, New York, pp 469–498

    Google Scholar 

  32. Majumdar BB, Guha G, Ray AN, Bala B (2012) Toxic intracerebral demyelination in a case of suicidal Cypermethrin poisoning. Ann Trop Med Public Health 5:615–617

    Article  Google Scholar 

  33. McAdie MG (1963) Thermal decomposition of molecular complexes. Can J Chem 41:2144–2153

    Article  CAS  Google Scholar 

  34. Michaud JP, Grant AK (2003) IPM-compatibility of foliar insecticides for citrus: indices derived from toxicity to beneficial insects from four orders. J Insect Sci 3:18–22

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Orgovanyi J, Otta K, Poppl L, Fenyvesi E, Zaray G (2005) Spectrophotometric and thermo analytical study of cypermethrin/cyclodextrin complexes. Microchem J 79(1–2):77–82

    Article  CAS  Google Scholar 

  36. Orgovanyi J, Polli L, Klára H (2005) Thermoanalytical method for studying the guest content in cyclodextrin inclusion complexes. J Therm Anal Calorim 81(2):261–266

    Article  CAS  Google Scholar 

  37. Orgovanyi J, Olah E, Klára H, Fenyvesi E (2009) Dissolution properties of cypermethrin/cyclodextrin complexes. J Incl Phenom Macrocycl Chem 63:53–59. https://doi.org/10.1007/s10847-008-9488-3

    Article  CAS  Google Scholar 

  38. OSHA Guidelines (1964) Occupational disease, a guide to their recognition. U.S. Department of Health, Education, and Welfare, Public Health Service, Public Health Service Publication No. 1097, U.S. Government Printing Office, Washington, DC, pp 245–247

  39. Pumamadjaja AH, Russell RA (2005) Pheromone communication in a robot swarm: necrophoric bee behavior and its replication. Robotica 23(6):731–742. https://doi.org/10.1017/S0263574704001225

    Article  Google Scholar 

  40. Radell J, Brodman BW (1965) Urea inclusion compounds of alkenoic acids and alkyl alkenoates. Can J Chem 43:304–305

    Article  CAS  Google Scholar 

  41. Radell J, Connolly JW (1960) Urea complexes of partially fluorinated esters. J Org Chem 25:1202–1206

    Article  Google Scholar 

  42. Radell J, Connolly JW (1961) Determination of relative stability of urea complexes from X-ray powder diffraction data. In: Muller WM (ed) Advances in X-ray analysis, vol 4. Plenum Press, New York, pp 140–150

    Chapter  Google Scholar 

  43. Rosenheimer MS, Dubowski Y (2007) Heterogeneous ozonolysis of cypermethrin using real time monitoring FTIR techniques. J Phys Chem C 111(31):11682–11691. https://doi.org/10.1021/jp072937t

    Article  CAS  Google Scholar 

  44. Schwedes J, Schulze D (1990) Measurement of flow properties of bulk solids. Powder Technol 61(1):59–68

    Article  CAS  Google Scholar 

  45. Shah RB, Tawakkul MA, Khan MA (2008) Comparative evaluation of flow for pharmaceutical powders and granules. AAPS Pharm Sci Tech 9(1):250–258. https://doi.org/10.1208/s12249-008-9046-8

    Article  CAS  Google Scholar 

  46. Silva MM, Figueroa-Villar JD, Aguiar AP, Riehl CAS (2004) Comparison between the efficacy of two cleanup methods for the 1H-NMR analysis of food samples contaminated with cypermethrin. Ann Magn Reson 3(1–2):1–5

    Google Scholar 

  47. Singh AK, Tiwari MN, Prakash O, Singh MP (2012) A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration. Curr Neuropharmacol 10(1):64–71. https://doi.org/10.2174/157015912799362779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singleton ST, Lein PJ, Farahat FM, Farahat T, Bonner MR, Knaak JB, Olson JR (2014) Characterization of α-cypermethrin exposure in Egyptian agricultural workers. Int J Hyg Environ Health 217(4–5):538–545. https://doi.org/10.1016/j.ijheh.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  49. Tan CX, Shen DL, Weng JQ, Chen QW, Liu HJ, Yuan QL (2004) Research on the rheological properties of pesticide suspension concentrate. J Zhejiang Univ Sci 5(12):1604–1607

    Article  CAS  Google Scholar 

  50. Thakral S, Madan AK (2007) Urea inclusion compounds of enalapril maleate for the improvement of pharmaceutical characteristics. J Pharm Pharmacol 59(11):1501–1507

    Article  Google Scholar 

  51. Thakral S, Madan AK (2008) Adduction of amiloride hydrochloride in urea through a modified technique for the dissolution enhancement. J Pharm Sci 97(3):1191–1201

    Article  CAS  Google Scholar 

  52. Thakral S, Madan AK (2008) Urea co-inclusion compounds of glipizide for the improvement of dissolution profile. J Incl Phenom Macrocycl Chem 60(3):203–209. https://doi.org/10.1007/s10847-007-9368-2

    Article  CAS  Google Scholar 

  53. Thakral S, Madan AK (2008) Reduction in moisture sensitivity/uptake of moisture sensitive drugs through adduction in urea. J Pharm Innov 3(4):249–257. https://doi.org/10.1007/s12247-008-9045-z

    Article  Google Scholar 

  54. Thakral S, Madan AK (2008) Urea co-inclusion compounds of 13 cis-retinoic acid for simultaneous improvement of dissolution profile, photostability and safe handling characteristics. J Pharm Pharmacol 60(7):823–832

    Article  CAS  Google Scholar 

  55. Thakral S, Madan AK (2008) Topological models for prediction of heat of decomposition of urea inclusion compounds containing aliphatic endocytes. J Incl Phenom Macrocycl Chem 60(1):187–192

    Article  CAS  Google Scholar 

  56. Tippe A (1987) Evidence for different mechanisms of action of the three pyrethroids, deltamethrin, cypermethrin, and fenvalerate, on the excitation threshold of myelinated nerve. Pestic Biochem Physiol 28(1):67–74. https://doi.org/10.1016/0048-3575(87)90114-3

    Article  CAS  Google Scholar 

  57. Uniformity of dosage units (2011) United States pharmacopeia and national formulary USP 28–NF 23. The United States Pharmacopeial Convention Inc, Rockville, pp 2505–2510

    Google Scholar 

  58. Uragayala S, Kamaraju R, Tiwari S, Ghosh SK, Valecha N (2015) Small-scale evaluation of the efficacy and residual activity of alpha-cypermethrin WG (250 g AI/kg) for indoor spraying in comparison with alpha-cypermethrin WP (50 g AI/kg) in India. Malar J 14:223. https://doi.org/10.1186/s12936-015-0739-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. U.S. EPA (1989) Office of pesticides and toxic substances. Office of Pesticide Programs. Pesticide fact sheet. Cypermethrin. No. 199. Washington, DC. 03 Jan 01 1989

  60. U.S. EPA (1997) Office of pesticide programs list of chemicals evaluated for carcinogenic potential. Memo from W.L. Burnman, HED, to HED branch chiefs. Washington, DC. 19 Feb 1997

  61. Von Santos Velosco R, Pereira EJ, Guedes RN, Oliveria MG (2013) Does cypermethrin affect enzyme activity, respiration rate and walking behavior of the maize weevil (Sitophilus zeamais)? Insect Sci 20(3):358–366. https://doi.org/10.1111/j.1744-7917.2012.01529.x

    Article  CAS  Google Scholar 

  62. Wedlock DJ, Woodburn JM (1988) Solid insecticidal formulation. US 5711956 A

  63. Weston DP, Holmes RW, You J, Lydy JM (2005) Aquatic toxicity due to residential use of pyrethroid insecticides. Environ Sci Technol 39:9778–9784

    Article  CAS  Google Scholar 

  64. White MA (1988) Origins of thermodynamic stability of urea; alkane inclusion compounds. Can J Chem 76:1695–1698

    Article  Google Scholar 

  65. Wolansky MJ, Harrill JA (2008) Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review. Neurotoxicol Teratol 30:55–78

    Article  CAS  Google Scholar 

  66. World Health Organization (1989) Cypermethrin environmental health criteria 82. United Nations Environment Programme, International Labor Organization and WHO, Geneva

    Google Scholar 

  67. Yang CC, Pan IH (1996) Preparation of pesticide microcapsule.US 5576008 A

  68. Yao Q, You B, Zhou S, Chen M, Wang Y, Li W (2014) Inclusion complexes of cypermethrin and permethrin with monochlorotriazinyl-beta-cyclodextrin: a combined spectroscopy, TG/DSC and DFT study. Spectrochim Acta A Mol Biomol Spectrosc 117:576–586. https://doi.org/10.1016/j.saa.2013.09.036

    Article  CAS  PubMed  Google Scholar 

  69. Zhao J, Chi Y, Liu F, Jia D, Yao K (2015) Effects of two surfactants and beta-cyclodextrin on beta-cypermethrin degradation by Bacillus licheniformis B-1. J Agric Food Chem 63(50):10729–10735. https://doi.org/10.1021/acs.jafc.5b04485

    Article  CAS  PubMed  Google Scholar 

  70. Zimmerschied WJ, Dinnerstein RA, Weitkamp AW, Marschner RF (1950) Crystalline adducts of urea with linear aliphatic compounds. Ind Eng Chem 42:1300–1306

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Insecticides (India) Ltd, Bhiwadi, for providing sample of cypermethrin. Authors thank Anton Paar, Gurgaon, for allowing rheological studies. Authors thank JCDM College of Pharmacy, Sirsa, for assistance in DSC studies. Authors thank SAIF, Chandigarh, for allowing NMR and XRD studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Madan.

Ethics declarations

Conflict of the interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhall, M., Madan, A.K. Improvement in Rheological, Safe Handling and Formulation Characteristics of Viscous Cypermethrin Through Co-inclusion in Urea. Agric Res 8, 467–480 (2019). https://doi.org/10.1007/s40003-019-00398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-019-00398-7

Keywords

Navigation