Skip to main content
Log in

Electrophoretic Separation of Humic Acids Isolated from Tropical Soils Through Modified Denaturing Polyacrylamide Gel Electrophoresis

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

Electrophoretic separation of humic acids obtained from soil was attempted through denaturing polyacrylamide gel electrophoresis (dn-PAGE) by modifying the known methods. The modifications of sample preparation and gel composition led to significant improvement in both visibility and intensity of humic acid profile. The comparative profile showed a similar nature of humic acid components in all the samples and the commercial standard. The Fourier transform infrared spectroscopy (FTIR) spectra indicated the presence of carboxyl and carbonyl functional groups and aliphatic chains in humic acid samples. The modified method facilitated better separation of humic acid. The results of the present study indicate the potential of dn-PAGE for electrophoretic separation of different components of humic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Angelico R, Ceglie A, He JZ, Liu YR, Palumbo G, Colombo C (2014) Particle size, charge and colloidal stability of humic acids coprecipitated with ferrihydrite. Chemosphere 99:239–247

    Article  CAS  PubMed  Google Scholar 

  2. Asakawa D, Iimura Y, Kiyota T, Yanagi Y, Fujitake N (2011) Molecular size fractionation of soil humic acids using preparative high performance size-exclusion chromatography. J Chromatogr A 1218:6448–6453

    Article  CAS  PubMed  Google Scholar 

  3. Asakawa D, Kiyota T, Yanagi Y, Fujitake N (2008) Optimization of conditions for high-performance size-exclusion chromatography of different soil humic acids. Anal Sci 24:607–613

    Article  CAS  PubMed  Google Scholar 

  4. Bremner JM (1960) Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci 55(01):11–33

    Article  CAS  Google Scholar 

  5. Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H + ATPase activity in maize roots. Plant Physiol 130:1951–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cavani L, Ciavatta C, Trubetskaya OE, Reznikova OI, Afanas’eva GV, Trubetskoj OA (2003) Capillary zone electrophoresis of soil humic acid fractions obtained by coupling size-exclusion chromatography and polyacrylamide gel electrophoresis. J Chromatogr A 983:263–270

    Article  CAS  PubMed  Google Scholar 

  7. Chefetz B, Tarchitzky J, Deshmukh AP, Hatcher PG, Chen Y (2002) Structural characterization of soil organic matter and humic acids in particle-size fractions of an agricultural soil. Soil Sci Soc Am J 66:129–141

    Article  CAS  Google Scholar 

  8. Chilom G, Rice JA (2009) Structural organization of humic acid in the solid state. Langmuir 25(16):9012–9015

    Article  CAS  PubMed  Google Scholar 

  9. Chin YP, Gschwend PM (1991) The abundance, distribution, and configuration of porewater organic colloids in recent sediments. Geochim Cosmochim Acta 55:309–1317

    Article  Google Scholar 

  10. Conte P, Piccolo A (1999) Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environ Sci Technol 33:1682–1690

    Article  CAS  Google Scholar 

  11. de Gonzalez NM, Castagnola MASSIMO, Rossetti D (1981) Humic acid characterization of Colombian soil by disc electrophoresis and infrared spectroscopy following gel filtration. J Chromatogr A 209:421–431

    Article  Google Scholar 

  12. de Santiago A, Delgado A (2007) Effects of humic substances on iron nutrition of lupin. Biol Fert Soils 43(6):829–836

    Article  Google Scholar 

  13. D’Orazio V, Senesi N (2009) Spectroscopic properties of humic acids isolated from the rhizosphere and bulk soil compartments and fractionated by size-exclusion chromatography. Soil Biol Biochem 41(9):1775–1781

    Article  Google Scholar 

  14. Gieguzynska E, Amine-Khodja A, Trubetskoj OA, Trubetskaya OE, Guyot G, Ter Halle A, Golebiowska D, Richard C (2009) Compositional differences between soil humic acids extracted by various methods as evidenced by photosensitizing and electrophoretic properties. Chemosphere 75:1082–1088

    Article  CAS  PubMed  Google Scholar 

  15. Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (1989) The search for structure: setting the scene. In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II: in search of structure. Wiley, Chichester, pp 3–32

    Google Scholar 

  16. Li L, Lia W, Peng P, Sheng G, Fu J, Huang W (2006) Compositional and source characterization of base progressively extracted humic acids using pyrolytic gas chromatography mass spectrometry. Appl Geochem 21:1455–1468

    Article  CAS  Google Scholar 

  17. Manning TJ, Bennett T, Milton D (2000) Aggregation studies of humic acid using multiangle laser light scattering. Sci Total Environ 257:171–176

    Article  CAS  PubMed  Google Scholar 

  18. Mao JD, Schmidt-Rohr K (2006) Absence of mobile carbohydrate domains in dry humic substances proven by NMR, and implications for organic-contaminant sorption models. Environ Sci Technol 40(6):1751–1756

    Article  CAS  PubMed  Google Scholar 

  19. Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110

    Article  CAS  Google Scholar 

  20. Nikbakht A, Kafi M, Babalar M, Xia YP, Luo A, Etemadi NA (2008) Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. J Plant Nutr 31(12):2155–2167

    Article  CAS  Google Scholar 

  21. Novotny EH, de Azevedo ER, Bonagamba TJ, Cunha TJ, Madari BE, Benites VDM, Hayes MH (2007) Studies of the compositions of humic acids from Amazonian dark earth soils. Environ Sci Technol 41:400–405

    Article  CAS  PubMed  Google Scholar 

  22. Olk DC, Cassman KG, Mahieu N, Randall EW (1998) Conserved chemical properties of young humic acid fractions in tropical lowland soil under intensive irrigated rice cropping. Eur J Soil Sci 49:337–349

    Article  CAS  Google Scholar 

  23. Olk DC, Cassman KG, Randall EW, Kinchesh P, Sanger LJ, Anderson JM (1996) Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. Eur J Soil Sci 47:293–303

    Article  CAS  Google Scholar 

  24. Rigol A, Lopez-Sanchez JF, Rauret G (1994) Capillary zone electrophoresis of humic acids. J Chromatogr A 664:301–305

    Article  CAS  Google Scholar 

  25. Saiz-Jimenez C, Trubetskaya OE, Trubetskoj OA, Hermosin B (1999) Polyacrylamide gel electrophoresis of soil humic acids, lignins, model phenolic polymers, and fungal melanins. Commun Soil Sci Plant Anal 30:345–352

    Article  CAS  Google Scholar 

  26. Sarkar A, Rakwal R, Agrawal SB, Shibato J, Ogawa Y, Yoshida Y, Agrawal GK, Agrawal M (2010) Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. J Proteom Res 9:4565–4584

    Article  CAS  Google Scholar 

  27. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbire SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56

    Article  CAS  PubMed  Google Scholar 

  28. Spaccini R, Piccolo A (2009) Molecular characteristics of humic acids extracted from compost at increasing maturity stages. Soil Biol Biochem 41:1164–1172

    Article  CAS  Google Scholar 

  29. Stott DE, Martin JP (1990) Synthesis and degradation of natural and synthetic humic material in soils. In: MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (eds) Humic substances in soil and crop sciences: selected readings. American Society of Agronomy, Inc. and Soil Science Society of America, Inc., Madison, pp 37–63

    Google Scholar 

  30. Swift RS (1996) Organic matter characterization. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America, Madison, pp 1018–1020

    Google Scholar 

  31. Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Mentler A, Gerzabek MH (2007) FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J Plant Nutr Soil Sci 170(4):522–529

    Article  CAS  Google Scholar 

  32. Trubetskaya OE, Trubetskoi OA, Borisov BA, Ganzhara NF (2008) Electrophoresis and size-exclusion chromatography of humic substances extracted from detritus and soils of different geneses. Eur Soil Sci 41:171–175

    Article  Google Scholar 

  33. Trubetskoj O, Trubetskaya O, Afanas’Eva GV, Reznikova OI, Saiz-Jimenez C (1997) Polyacrylamide gel electrophoresis of soil humic acid fractionated by size-exclusion chromatography and ultrafiltration. J Chromatogr A 767:285–292

    Article  CAS  Google Scholar 

  34. Trubetskoj OA, Trubetskaya OE, Khomutova TE (1992) Isolation, purification and some physico-chemical properties of soil humic substances fractions obtained by polyacrylamide gel electrophoresis. Soil Biol Biochem 24(9):893–896

    Article  Google Scholar 

  35. Varanini Z, Pinton R (2006) Plant-soil relationship: role of humic substances in iron nutrition. In: Barton LL, Abadía J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Netherlands, pp 153–168

    Chapter  Google Scholar 

  36. Ve NB, Olk DC, Cassman KG (2004) Characterization of humic acid fractions improves estimates of nitrogen mineralization kinetics for lowland rice soils. Soil Sci Soc Am J 68:1266–1277

    Article  CAS  Google Scholar 

  37. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Divya Pandey and Abhijit Sarkar both acknowledge the financial support from CSIR, New Delhi, India, for Research Fellowships during their stay at Banaras Hindu University. All the authors are thankful to Head, Department of Botany, Banaras Hindu University, for providing necessary laboratory facilities for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhoolika Agrawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, D., Sarkar, A., Agrawal, S.B. et al. Electrophoretic Separation of Humic Acids Isolated from Tropical Soils Through Modified Denaturing Polyacrylamide Gel Electrophoresis. Agric Res 6, 179–184 (2017). https://doi.org/10.1007/s40003-017-0255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-017-0255-9

Keywords

Navigation