Skip to main content

Advertisement

Log in

Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

High antibiotic and antifungal concentrations in wastewater from anti-infective drug production may exert selection pressure for multidrug-resistant (MDR) pathogens. We investigated the environmental presence of active pharmaceutical ingredients and their association with MDR Gram-negative bacteria in Hyderabad, South India, a major production area for the global bulk drug market.

Methods

From Nov 19 to 28, 2016, water samples were collected from the direct environment of bulk drug manufacturing facilities, the vicinity of two sewage treatment plants, the Musi River, and habitats in Hyderabad and nearby villages. Samples were analyzed for 25 anti-infective pharmaceuticals with liquid chromatography–tandem mass spectrometry and for MDR Gram-negative bacteria using chromogenic culture media. In addition, specimens were screened with PCR for bla VIM, bla KPC, bla NDM, bla IMP-1, and bla OXA-48 resistance genes.

Results

All environmental specimens from 28 different sampling sites were contaminated with antimicrobials. High concentrations of moxifloxacin, voriconazole, and fluconazole (up to 694.1, 2500, and 236,950 µg/L, respectively) as well as increased concentrations of eight other antibiotics were found in sewers in the Patancheru–Bollaram industrial area. Corresponding microbiological analyses revealed an extensive presence of extended-spectrum beta-lactamase and carbapenemase-producing Enterobacteriaceae and non-fermenters (carrying mainly bla OXA-48, bla NDM, and bla KPC) in more than 95% of the samples.

Conclusions

Insufficient wastewater management by bulk drug manufacturing facilities leads to unprecedented contamination of water resources with antimicrobial pharmaceuticals, which seems to be associated with the selection and dissemination of carbapenemase-producing pathogens. The development and global spread of antimicrobial resistance present a major challenge for pharmaceutical producers and regulatory agencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization. Antimicrobial resistance 2014: global report on surveillance. Geneva: World Health Organization; 2014.

    Google Scholar 

  2. O’Neill J. The review on antimicrobial resistance 2014. Tackling drug-resistant infections globally: final report and recommendations. http://www.amr-review.org. Accessed 20 Jan 2017.

  3. Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int. 2016;86:140–9.

    Article  CAS  PubMed  Google Scholar 

  4. Bengtsson-Palme J, Angelin M, Huss M, et al. The human gut microbiome as a transporter of antibiotic resistance genes between continents. Antimicrob Agents Chemother. 2015;59:6551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Woodford N, Turton JF, Livermore DM. Multiresistant gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev. 2011;35:736–55.

    Article  CAS  PubMed  Google Scholar 

  6. Molton JS, Tambyah PA, Ang BS, et al. The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. Clin Infect Dis. 2013;56:1310–8.

    Article  PubMed  Google Scholar 

  7. Woerther PL, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum-ß-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev. 2013;26:744–58.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lübbert C, Straube L, Stein C, et al. Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int J Med Microbiol. 2015;305:148–56.

    Article  PubMed  Google Scholar 

  9. Kantele A, Lääveri T, Mero S, et al. Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin Infect Dis. 2015;60:837–46.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arcilla MS, van Hattem JM, Haverkate MR, et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. Lancet Infect Dis. 2017;17:78–85.

    Article  PubMed  Google Scholar 

  11. Mutreja A. Bacterial frequent flyers. Nat Rev Microbiol. 2012;10:734.

    Article  CAS  PubMed  Google Scholar 

  12. Fick J, Söderström H, Lindberg RH, et al. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem. 2009;28:2522–7.

    Article  CAS  PubMed  Google Scholar 

  13. Larsson DG, de Pedro C, Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater. 2007;148:751–5.

    Article  CAS  PubMed  Google Scholar 

  14. Rutgersson C, Fick J, Marathe N, et al. Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges. Environ Sci Technol. 2014;48:7825–32.

    Article  CAS  PubMed  Google Scholar 

  15. Ashbolt NJ, Amézquita A, Backhaus T, et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Persp. 2013;121:993–1001.

    Google Scholar 

  16. Dang B, Mao D, Xu Y, Luo Y. Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes. Water Res. 2016;111:81–91.

    Article  PubMed  Google Scholar 

  17. Bengtsson-Palme J, Boulund F, Fick J, et al. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol. 2014;5:648.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11:355–62.

    Article  PubMed  Google Scholar 

  19. Hsu LY, Apisarnthanarak A, Khan E, et al. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev. 2017;30:1–22.

    Article  PubMed  Google Scholar 

  20. Marathe NP, Regina VR, Walujkar SA, et al. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. PLoS One. 2013;8:e77310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khan GA, Berglund B, Khan KM, et al. Occurrence and abundance of antibiotics and resistance genes in rivers, canal and near drug formulation facilities—a study in Pakistan. PLoS One. 2013;8:e62712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bengtsson-Palme J, Hammarén R, Pal C, et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci Total Environ. 2016;572:697–712.

    Article  CAS  PubMed  Google Scholar 

  23. Changing Markets. Superbugs in the Supply Chain, 2016: how pollution from antibiotics factories in India and China is fuelling the global rise of drug-resistant infections. http://www.mightyearth.org/wp-content/uploads/2016/10/changing-market-superbugs-in-the-supply-chain-guard-font-fin-print.pdf. Accessed 20 Jan 2017.

  24. Investigators of the Delhi neonatal infection study. (DeNIS) collaboration. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: a cohort study. Lancet Glob Health. 2016;4:e752–60.

    Article  Google Scholar 

  25. India online pages. Population of Hyderabad 2016. http://www.indiaonlinepages.com/population/hyderabad-population.html. Accessed 20 Jan 2017.

  26. Central Pollution Control Board of India (CPCB). Final action plan for improvement of environmental parameters in critically polluted areas of Patancheru–Bollaram cluster, Andhra Pradesh, 2010. http://cpcb.nic.in/divisionsofheadoffice/ess/Patancheru-Bollaram.pdf. Accessed 20 Jan 2017.

  27. Central Pollution Control Board of India (CPCB). Note on the implementation of the action plan and its compliance for the critically polluted area of Patancheru–Bollaram in Telangana, 2016. http://cpcb.nic.in/zonaloffice/banglore/CEPI_Bollaram.pdf. Accessed 20 Jan 2017.

  28. The Hans India. Pharma still pollutes Patancheru, 2015. http://www.thehansindia.com/posts/index/Telangana/2015-11-28/Pharma-still-pollutes-Patancheru/189407. Accessed 20 Jan 2017.

  29. Smith M, Diederen B, Scharringa J, et al. Rapid and accurate detection of carbapenemase genes in Enterobacteriaceae with the Cepheid Xpert Carba-R assay. J Med Microbiol. 2016;65:951–3.

    Article  PubMed  Google Scholar 

  30. Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13:785–96.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kothari C, Gaind R, Singh LC, et al. Community acquisition of β-lactamase producing Enterobacteriaceae in neonatal gut. BMC Microbiol. 2013;13:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saseedharan S, Sahu M, Pathrose EJ, Shivdas S. Act fast as time is less: high faecal carriage of carbapenem-resistant Enterobacteriaceae in critical care patients. J Clin Diagn Res. 2016;10:DC01–5.

    PubMed  PubMed Central  Google Scholar 

  33. Shafiq N, Praveen Kumar M, Gautam V, et al. Antibiotic stewardship in a tertiary care hospital of a developing country: establishment of a system and its application in a unit-GASP initiative. Infection. 2016;44:651–9.

    Article  CAS  PubMed  Google Scholar 

  34. The Indian Express. India has 60.4 per cent people without access to toilet: study 2015. http://indianexpress.com/article/india/india-news-india/india-has-60-4-per-cent-people-without-access-to-toilet-study/. Accessed 20 January 2017.

  35. Lübbert C, Rodloff AC, Laudi S, et al. Lessons learned from excess mortality associated with Klebsiella pneumoniae carbapenemase-2-producing K. pneumoniae in liver transplant recipients. Liver Transpl. 2014;20:736–8.

    Article  PubMed  Google Scholar 

  36. Lübbert C, Lippmann N, Busch T, et al. Long-term carriage of Klebsiella pneumoniae carbapenemase-2-producing K. pneumoniae after a large single-center outbreak in Germany. Am J Infect Control. 2014;42:376–80.

    Article  PubMed  Google Scholar 

  37. Martin RM, Cao J, Brisse S, et al. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. mSphere. 2016;1:e00261–76.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chandran SP, Diwan V, Tamhankar AJ, et al. Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB gene in Escherichia coli in hospital wastewater: a matter of concern. J Appl Microbiol. 2014;117:984–95.

    Article  CAS  PubMed  Google Scholar 

  39. Marathe NP, Shetty SA, Shouche YS, Larsson DG. Limited bacterial diversity within a treatment plant receiving antibiotic-containing waste from bulk drug production. PLoS One. 2016;11:e0165914.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gothwal R, Shashidar. Occurrence of high levels of fluoroquinolones in aquatic environment due to effluent discharges from bulk drug manufacturers. J Hazard Toxic Radioact Waste. 2016;28:2153–5. doi:10.1061/(ASCE)HZ.2153-5515.0000346.

    Google Scholar 

Download references

Author contributions

Study conception and design: CL, CB, ACR, and FS. Identification of sampling sites and acquisition of data: CL, CB, and AD. Provision of documentary images: CL and CB. Performance of the laboratory experiments: NL and MK. Data analysis and interpretation of the results: CL, CB, NL, TE, ACR, MK, and FS. Drafting of the manuscript: CL. Critical revision of the manuscript: CL, CB, AD, TE, NL, ACR, MK, and FS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Lübbert.

Ethics declarations

Conflict of interest

All authors deny any potential conflicts of interest.

Funding

The authors did not receive any external funding.

Additional information

A. C. Rodloff, M. Kinzig, and F. Sörgel contributed equally as senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lübbert, C., Baars, C., Dayakar, A. et al. Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection 45, 479–491 (2017). https://doi.org/10.1007/s15010-017-1007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-017-1007-2

Keywords

Navigation