Skip to main content
Log in

Pigmentation effect of electromagnetic fields at various intensities to melanocytes

  • Original Article
  • Cell Biology
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Melanogenesis is the biological process that results in the synthesis of skin pigment of melanin and it has various functions in living systems and is synthesized by the melanosome within the melanocytes. A variety of physical treatments are used to promote melanin production in the melanocytes for pigmentation control. The purpose of this study was to evaluate the intensity-dependent effect of extremely low-frequency electromagnetic fields (ELF-EMFs) on melanogenesis by melanocytes in vitro. Melanocytes were exposed to ELF-EMFs at a frequency of 50 Hz and at intensities in the range of 0.5–20 G over 4 days. The results of lactate dehydrogenase assay showed that there were no significant differences between cells exposed to 0.5 G or 2 G groups and the controls. The melanin contents increased 1.2–1.5-fold in cells exposed to ELF-EMFs and tyrosinase activity increased 1.3-fold in cells exposed to ELF-EMFs, relative to the controls. Also, exposure to ELF-EMFs was associated with activation in cyclic-AMP response element binding protein and microphthalmia-associated transcription factor (MITF) was up-regulated. Up-regulation of MITF induces the expression of melanogenesis-related markers, such as tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2. In conclusion, the present study showed that the exposure to ELF-EMFs at low intensities can stimulate melanogenesis in melanocyte, and these results may be used to a therapeutic devices for inducing repigmentation in vitiligo patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Videira IF, Moura DF, Magina S. Mechanisms regulating melanogenesis. An Bras Dermatol 2013;88:76–83.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lotti T, Gori A, Zanieri F, Colucci R, Moretti S. Vitiligo:new and emerging treatments. Dermatol Ther 2008;21:110–117.

    Article  PubMed  Google Scholar 

  3. Parsad D, Bhatnagar A, De D. Narrowband ultraviolet B for the treatment of vitiligo. Expert Rev Dermatol 2010;5:445–459.

    Article  Google Scholar 

  4. Sun Y, Wu Y, Xiao B, Li L, Li L, Chen HD, et al. Treatment of 308-nm excimer laser on vitiligo:a systemic review of randomized controlled trials. J Dermatolog Treat 2015;26:347–353.

    Article  PubMed  Google Scholar 

  5. Byun JW, Babitha S, Kim EK, Shin J. A successful helium-neon laser and topical tacrolimus combination therapy in one child with vitiligo. Dermatol Ther 2015;28:333–335.

    Article  PubMed  Google Scholar 

  6. Violaine V. Biological effects of low frequency electromagnetic fields. Radiobiología 2003;3:44–46.

    Google Scholar 

  7. Baek S, Quan X, Kim S, Lengner C, Park JK, Kim J. Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state. ACS Nano 2014;8:10125–10138.

    Article  CAS  PubMed  Google Scholar 

  8. Kim MO, Jung H, Kim SC, Park JK, Seo YK. Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Med 2015;35:153–160.

    CAS  PubMed  Google Scholar 

  9. Choi YK, Lee DH, Seo YK, Jung H, Park JK, Cho H. Stimulation of neural differentiation in human bone marrow mesenchymal stem cells by extremely low-frequency electromagnetic fields incorporated with MNPs. Appl Biochem Biotechnol 2014;174:1233–1245.

    Article  CAS  PubMed  Google Scholar 

  10. Simon D, Daubos A, Pain C, Fitoussi R, Vié K, Taieb A, et al. Exposure to acute electromagnetic radiation of mobile phone exposure range alters transiently skin homeostasis of a model of pigmented reconstructed epidermis. Int J Cosmet Sci 2013;35:27–34.

    Article  CAS  PubMed  Google Scholar 

  11. Dong D, Jiang M, Xu X, Guan M, Wu J, Chen Q, et al. The effects of NBUVB on the hair follicle-derived neural crest stem cells differentiating into melanocyte lineage in vitro. J Dermatol Sci 2012;66:20–28.

    Article  CAS  PubMed  Google Scholar 

  12. Lan CC, Wu CS, Chiou MH, Chiang TY, Yu HS. Low-energy heliumneon laser induces melanocyte proliferation via interaction with type IV collagen:visible light as a therapeutic option for vitiligo. Br J Dermatol 2009;161:273–280.

    Article  CAS  PubMed  Google Scholar 

  13. Sherwood KA, Murray S, Kurban AK, Tan OT. Effect of wavelength on cutaneous pigment using pulsed irradiation. J Invest Dermatol 1989;92:717–720.

    Article  CAS  PubMed  Google Scholar 

  14. Goldberg DJ, Marmur ES, Schmults C, Hussain M, Phelps R. Histologic and ultrastructural analysis of ultraviolet B laser and light source treatment of leukoderma in striae distensae. Dermatol Surg 2005;31:385–387.

    Article  CAS  PubMed  Google Scholar 

  15. Alhowaish AK, Dietrich N, Onder M, Fritz K. Effectiveness of a 308-nm excimer laser in treatment of vitiligo:a review. Lasers Med Sci 2013;28:1035–1041.

    Article  PubMed  Google Scholar 

  16. Lee HC, Hong MN, Jung SH, Kim BC, Suh YJ, Ko YG, et al. Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics 2015;36:506–516.

    Article  CAS  PubMed  Google Scholar 

  17. Julio César Hernández P, Modesto Sosa A, Teodoro Córdova F, Gloria Barbosa S, Sergio Solorio M, Myrna Sabanero L. Study of electromagnetic fields on cellular systems. Acta Univ 2009;19:65–70.

    Google Scholar 

  18. Pirozzoli MC, Marino C, Lovisolo GA, Laconi C, Mosiello L, Negroni A. Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics 2003;24:510–516.

    Article  CAS  PubMed  Google Scholar 

  19. Shahbazi-Gahrouei D, Razavi S, Salimi M. Effect of extremely low-frequency (50 Hz) field on proliferation rate of human adipose-derived mesenchymal stem cells. J Radiobiol 2014;1:31–37.

    Google Scholar 

  20. Cho H, Seo YK, Yoon HH, Kim SC, Kim SM, Song KY, et al. Neural stimulation on human bone marrow-derived mesenchymal stem cells by extremely low frequency electromagnetic fields. Biotechnol Prog 2012;28:1329–1335.

    Article  CAS  PubMed  Google Scholar 

  21. Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature 2007;445:843–850.

    Article  CAS  PubMed  Google Scholar 

  22. Costin GE, Hearing VJ. Human skin pigmentation:melanocytes modulate skin color in response to stress. FASEB J 2007;21:976–994.

    Article  CAS  PubMed  Google Scholar 

  23. Henion PD, Weston JA. Timing and pattern of cell fate restrictions in the neural crest lineage. Development 1997;124:4351–4359.

    CAS  PubMed  Google Scholar 

  24. Jian D, Jiang D, Su J, Chen W, Hu X, Kuang Y, et al. Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating up-regulation of tyrosinase and MITF in mouse B16 melanoma cells. Steroids 2011;76:1297–1304.

    Article  CAS  PubMed  Google Scholar 

  25. Buscà R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 2000;13:60–69.

    Article  PubMed  Google Scholar 

  26. Videira IF, Moura DF, Magina S. Mechanisms regulating melanogenesis. An Bras Dermatol 2013;88:76–83.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tachibana M. MITF:a stream flowing for pigment cells. Pigment Cell Res 2000;13:230–240.

    Article  CAS  PubMed  Google Scholar 

  28. Vachtenheim J, Borovanský J. “Transcription physiology” of pigment formation in melanocytes:central role of MITF. Exp Dermatol 2010;19:617–627.

    Article  CAS  PubMed  Google Scholar 

  29. Levy C, Khaled M, Fisher DE. MITF:master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 2006;12:406–414.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang Z, Li S, Liu Y, Deng P, Huang J, He G. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2011;43:763–770.

    Article  CAS  Google Scholar 

  31. Wei B, Zhang YP, Yan HZ, Xu Y, Du TM. Cilostazol promotes production of melanin by activating the microphthalmia-associated transcription factor (MITF). Biochem Biophys Res Commun 2014;443:617–621.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Kwon Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, SE., Kim, YM., Kang, KH. et al. Pigmentation effect of electromagnetic fields at various intensities to melanocytes. Tissue Eng Regen Med 13, 560–567 (2016). https://doi.org/10.1007/s13770-016-0090-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-0090-2

Key Words

Navigation