Skip to main content
Log in

Comparison and contrast of plant, yeast, and mammalian ER stress and UPR

  • Review
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

The endoplasmic reticulum (ER) is a well-characterized protein folding mechanism in eukaryotic organisms. Many secretory and membrane proteins are folded in the ER before they are translocated to their functional destination. Various conditions, such as biotic, abiotic, or physiological stresses, lead to the accumulation of unfolded and misfolded proteins in the ER, resulting in ER stress. In response to ER stress, cells initiate a protective response called the unfolded protein response (UPR) to maintain cellular homeostasis. Previous studies suggest that inositol-requiring kinase 1 (IRE1) is a universal ER stress sensor in yeast, mammals, and plants. IRE1-mediated splicing of UPR transducers, such as HAC1, XBP1, and bZIP60, triggers the UPR in yeast, mammals, and plants, respectively. In mammals, activated transcription factor 6 and double stranded RNA-activated protein kinase-like ER kinases are involved in the UPR. In plants, the additional UPR transducers bZIP28 and bZIP17 are activated by Golgi-localized S1P and S2P proteases. Subsequently, these UPR transducers are exported to the nucleus and upregulate the expression of UPR-responsive genes encoding BiP, calreticulin, calnexin, protein disulfide isomerase, and glucose-regulated protein 94 to decrease the amount of misfolded proteins and induce endoplasmic reticulum-associated degradation. In plants, the UPR signaling pathway plays an important role in ER homeostasis and normal biological processes; however, the molecular mechanisms of the UPR in plants remain poorly understood. This paper provides an overview of the regulatory and signaling mechanisms of the UPR across kingdoms. In addition, the emerging role of the UPR in plant physiology and defense response will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arsham AM, Neufeld TP (2009) A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway. PLoS One 4(6):e6068

    Article  Google Scholar 

  • Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4(12):e423

    Article  Google Scholar 

  • Bruhat A, Averous J, Carraro V, Zhong C, Reimold AM, Kilberg MS, Fafournoux P (2002) Differences in the molecular mechanisms involved in the transcriptional activation of the CHOP and asparagine synthetase genes in response to amino acid deprivation or activation of the unfolded protein response. J Biol Chem 277(50):48107–48114

    Article  CAS  Google Scholar 

  • Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108(12):2777–2793

    Article  CAS  Google Scholar 

  • Chen Y, Brandizzi F (2012) AtIRE1A/AtIRE1B and AGB1 independently control two essential unfolded protein response pathways in Arabidopsis. Plant J 69(2):266–277

    Article  CAS  Google Scholar 

  • Chen Y, Aung K, Rolčík J, Walicki K, Friml J, Brandizzi F (2014) Inter-regulation of the unfolded protein response and auxin signaling. Plant J 77(1):97–107

    Article  CAS  Google Scholar 

  • Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87(3):391–404

    Article  CAS  Google Scholar 

  • Del Bem LE (2011) The evolutionary history of calreticulin and calnexin genes in green plants. Genetica 139(2):255–259

    Article  Google Scholar 

  • Deng Y, Humbert S, Liu J-X, Srivastava R, Rothstein SJ, Howell SH (2011) Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc Natl Acad Sci 108(17):7247–7252

    Article  CAS  Google Scholar 

  • Deng Y, Srivastava R, Howell SH (2013a) Endoplasmic reticulum (ER) stress response and its physiological roles in plants. Int J Mol Sci 14(4):8188–8212

    Article  Google Scholar 

  • Deng Y, Srivastava R, Howell SH (2013b) Protein kinase and ribonuclease domains of IRE1 confer stress tolerance, vegetative growth, and reproductive development in Arabidopsis. Proc Natl Acad Sci USA 110(48):19633–19638

    Article  CAS  Google Scholar 

  • Edwards D, Murray JA, Smith AG (1998) Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol 117(3):1015–1022

    Article  CAS  Google Scholar 

  • Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5(10):827–835

    Article  CAS  Google Scholar 

  • Gupta D, Tuteja N (2011) Chaperones and foldases in endoplasmic reticulum stress signaling in plants. Plant Signal Behav 6(2):232–236

    Article  CAS  Google Scholar 

  • Gusmaroli G, Tonelli C, Mantovani R (2001) Regulation of the CCAAT-Binding NF-Y subunits in Arabidopsisthaliana. Gene 264(2):173–185

    Article  CAS  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6(5):1099–1108

    Article  CAS  Google Scholar 

  • Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7(6):1153–1163

    Article  CAS  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633

    Article  CAS  Google Scholar 

  • Henriquez-Valencia C, Moreno AA, Sandoval-Ibañez O, Mitina I, Blanco-Herrera F, Cifuentes-Esquivel N, Orellana A (2015) bZIP17 and bZIP60 regulate the expression of BiP3 and other salt stress responsive genes in an UPR-independent manner in Arabidopsis thaliana. J Cell Biochem 116(8):1638–1645

    Article  CAS  Google Scholar 

  • Hetz C, Thielen P, Matus S, Nassif M, Court F, Kiffin R, Martinez G, Cuervo AM, Brown RH, Glimcher LH (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 23(19):2294–2306

    Article  CAS  Google Scholar 

  • Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12(9):703–719

    Article  CAS  Google Scholar 

  • Humbert S, Zhong S, Deng Y, Howell SH, Rothstein SJ (2012) Alteration of the bZIP60/IRE1 pathway affects plant response to ER stress in Arabidopsis thaliana. PLoS One 7(6):e39023

    Article  CAS  Google Scholar 

  • Iwakoshi NN (2003) Plasma cell differentiation and the Unfolded Protein Response intersect at the transcription factor XBP-1. Nat Immunol 4:321–329

    Article  CAS  Google Scholar 

  • Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102(14):5280–5285

    Article  CAS  Google Scholar 

  • Iwata Y, Fedoroff NV, Koizumi N (2008) Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell 20(11):3107–3121

    Article  CAS  Google Scholar 

  • Iwata Y, Yoneda M, Yanagawa Y, Koizumi N (2009) Characteristics of the nuclear form of the Arabidopsis transcription factor AtbZIP60 during the endoplasmic reticulum stress response. Biosci Biotechnol Biochem 73(4):865–869

    Article  CAS  Google Scholar 

  • Iwata Y, Nishino T, Takayama S, Koizumi N (2010a) Characterization of a plant-specific gene induced by endoplasmic reticulum stress in Arabidopsis thaliana. Biosci Biotechnol Biochem 74(10):2087–2091

    Article  CAS  Google Scholar 

  • Iwata Y, Sakiyama M, Lee M-H, Koizumi N (2010b) Transcriptomic response of Arabidopsis thaliana to tunicamycin-induced endoplasmic reticulum stress. Plant Biotechnol 27(2):161–171

    Article  CAS  Google Scholar 

  • Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, Tsuru A, Kohno K (2001) Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol 3(2):158–164

    Article  CAS  Google Scholar 

  • Kakiuchi C, Ishiwata M, Hayashi A, Kato T (2006) XBP1 induces WFS1 through an endoplasmic reticulum stress response element-like motif in SH-SY5Y cells. J Neurochem 97(2):545–555

    Article  CAS  Google Scholar 

  • Kawahara T, Yanagi H, Yura T, Mori K (1997) Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol Biol Cell 8(10):1845–1862

    Article  CAS  Google Scholar 

  • Kim HS, Jung G (2014) Reactive oxygen species increase HEPN1 expression via activation of the XBP1 transcription factor. FEBS Lett 588(23):4413–4421

    Article  CAS  Google Scholar 

  • Kokame K, Kato H, Miyata T (2001) Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem 276(12):9199–9205

    Article  CAS  Google Scholar 

  • Koong AC, Chauhan V, Romero-Ramirez L (2006) Targeting XBP-1 as a novel anti-cancer strategy. Cancer Biol Ther 5(7):756–759

    Article  CAS  Google Scholar 

  • Li H, Korennykh AV, Behrman SL, Walter P (2010) Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering. Proc Natl Acad Sci USA 107(37):16113–16118

    Article  CAS  Google Scholar 

  • Li Y, Humbert S, Howell SH (2012) ZmbZIP60 mRNA is spliced in maize in response to ER stress. BMC Res Notes 5:144

    Article  CAS  Google Scholar 

  • Lipson KL, Fonseca SG, Ishigaki S, Nguyen LX, Foss E, Bortell R, Rossini AA, Urano F (2006) Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab 4(3):245–254

    Article  CAS  Google Scholar 

  • Lisbona F, Hetz C (2009) Turning off the unfolded protein response: an interplay between the apoptosis machinery and ER stress signaling. Cell Cycle 8(11):1641–1644

    Article  Google Scholar 

  • Liu JX, Howell SH (2010) bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. Plant Cell 22(3):782–796

    Article  CAS  Google Scholar 

  • Liu Y, Li J (2014) Endoplasmic reticulum-mediated protein quality control in Arabidopsis. Front Plant Science 5:162

    Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007a) An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell 19(12):4111–4119

    Article  CAS  Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007b) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J 51(5):897–909

    Article  CAS  Google Scholar 

  • Liu JX, Srivastava R, Howell SH (2008) Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant Cell Environ 31(12):1735–1743

    Article  CAS  Google Scholar 

  • Liu Y, Burgos JS, Deng Y, Srivastava R, Howell SH, Bassham DC (2012) Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 24(11):4635–4651

    Article  CAS  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18(6):716–731

    Article  CAS  Google Scholar 

  • Martínez IM, Chrispeels MJ (2003) Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell Online 15(2):561–576

    Article  Google Scholar 

  • Matus S, Nassif M, Glimcher LH, Hetz C (2009) XBP-1 deficiency in the nervous system reveals a homeostatic switch to activate autophagy. Autophagy 5(8):1226–1228

    Article  Google Scholar 

  • Merrick WC (2004) Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332:1–11

    Article  CAS  Google Scholar 

  • Mishiba K, Nagashima Y, Suzuki E, Hayashi N, Ogata Y, Shimada Y, Koizumi N (2013) Defects in IRE1 enhance cell death and fail to degrade mRNAs encoding secretory pathway proteins in the Arabidopsis unfolded protein response. Proc Natl Acad Sci USA 110(14):5713–5718

    Article  CAS  Google Scholar 

  • Moreno AA, Orellana A (2011) The physiological role of the unfolded protein response in plants. Biol Res 44(1):75–80

    Article  CAS  Google Scholar 

  • Mori K (2009) Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem 146(6):743–750

    Article  CAS  Google Scholar 

  • Mori K, Ogawa N, Kawahara T, Yanagi H, Yura T (2000) mRNA splicing-mediated C-terminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. Proc Natl Acad Sci 97(9):4660–4665

    Article  CAS  Google Scholar 

  • Nagai A, Kadowaki H, Maruyama T, Takeda K, Nishitoh H, Ichijo H (2009) USP14 inhibits ER-associated degradation via interaction with IRE1α. Biochemical Biophys Rescommun 379(4):995–1000

    Article  CAS  Google Scholar 

  • Nagashima Y, Mishiba K, Suzuki E, Shimada Y, Iwata Y, Koizumi N (2011) Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Sci Rep 1:29

    Article  Google Scholar 

  • Nagashima Y, Iwata Y, Ashida M, Mishiba K-I, Koizumi N (2014) Exogenous salicylic acid activates two signaling arms of the unfolded Protein response in Arabidopsis. Plant Cell Physiol 55:1772–1778

    Article  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci 104(42):16450–16455

    Article  CAS  Google Scholar 

  • Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13(3):349–355

    Article  CAS  Google Scholar 

  • Reimold AM (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–307

    Article  CAS  Google Scholar 

  • Richardson CE, Kooistra T, Kim DH (2010) An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature 463(7284):1092–1095

    Article  CAS  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  Google Scholar 

  • Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  Google Scholar 

  • Schütze K, Harter K, Chaban C (2008) Post-translational regulation of plant bZIP factors. Trends Plant Sci 13(5):247–255

    Article  Google Scholar 

  • Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90(6):1031–1039

    Article  CAS  Google Scholar 

  • Sidrauski C, Cox JS, Walter P (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87(3):405–413

    Article  CAS  Google Scholar 

  • Srivastava R, Deng Y, Shah S, Rao AG, Howell SH (2013) BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell 25(4):1416–1429

    Article  CAS  Google Scholar 

  • Srivastava R, Deng Y, Howell SH (2014) Stress sensing in plants by an ER stress sensor/transducer, bZIP28. Front Plant Sci 5:59

    Article  Google Scholar 

  • Sun L, Yang ZT, Song ZT, Wang MJ, Lu SJ, Liu JX (2013) The plant-specific transcription factor gene NAC103 is induced by bZIP60 through a new cis-regulatory element to modulate the unfolded protein response in Arabidopsis. Plant J 76(2):274–286

    CAS  Google Scholar 

  • Sun L, Zhang S-S, Lu S-J, Liu J-X (2015) Site-1 protease cleavage site is important for the ER stress-induced activation of membrane-associated transcription factor bZIP28 in Arabidopsis. Sci China Life Sci 58(3):1–6

    Article  Google Scholar 

  • Tang W, Page M (2013) Transcription factor AtbZIP60 regulates expression of Ca2+-dependent protein kinase genes in transgenic cells. Mol Biol Rep 40(3):2723–2732

    Article  CAS  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249–258

    Article  CAS  Google Scholar 

  • Urade R (2009) The endoplasmic reticulum stress signaling pathways in plants. BioFactors 35(4):326–331

    Article  CAS  Google Scholar 

  • Wang S, Narendra S, Fedoroff N (2007) Heterotrimeric G protein signaling in the Arabidopsis unfolded protein response. Proc Natl Acad Sci USA 104(10):3817–3822

    Article  CAS  Google Scholar 

  • Welihinda AA, Kaufman RJ (1996) The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J Biol Chem 271(30):18181–18187

    Article  CAS  Google Scholar 

  • Williams B, Verchot J, Dickman MB (2014) When supply does not meet demand-ER stress and plant programmed cell death. Front Plant Sci 5:211

    Google Scholar 

  • Yan W, Frank CL, Korth MJ, Sopher BL, Novoa I, Ron D, Katze MG (2002) Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc Natl Acad Sci USA 99(25):15920–15925

    Article  CAS  Google Scholar 

  • Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6(6):1355–1364

    Article  CAS  Google Scholar 

  • Yorimitsu T, Nair U, Yang Z, Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281(40):30299–30304

    Article  CAS  Google Scholar 

  • Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins involvement of basic leucine zipper transcription factors. J Biol Chem 273(50):33741–33749

    Article  CAS  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891

    Article  CAS  Google Scholar 

  • Zhang P, McGrath B, Li SA, Frank A, Zambito F, Reinert J, Gannon M, Ma K, McNaughton K, Cavener DR (2002) The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22(11):3864–3874

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Y, Kanyuka K, Parry MA, Powers SJ, Halford NG (2008) GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis. J Exp Bot 59(11):3131–3141

    Article  CAS  Google Scholar 

  • Zhou J, Liu CY, Back SH, Clark RL, Peisach D, Xu Z, Kaufman RJ (2006) The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc Natl Acad Sci USA 103(39):14343–14348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Next-Generation BioGreen21 Program (SSAC: PJ01109102 and PJ01106901), Rural Development Administration, Republic of Korea. RC, JHB, EYB, and MGK wrote the manuscript with input from other authors. WYK and SYL edited the paper, and gave support and conceptual advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gab Kim.

Ethics declarations

Conflict of interest

All authors discussed and agreed on the contents of the paper and have no conflicts of interest to declare.

Additional information

Rupak Chakraborty and Ji Hyeong Baek have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, R., Baek, J.H., Bae, E.Y. et al. Comparison and contrast of plant, yeast, and mammalian ER stress and UPR. Appl Biol Chem 59, 337–347 (2016). https://doi.org/10.1007/s13765-016-0167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-016-0167-6

Keywords

Navigation