Skip to main content
Log in

Risk assessment of heavy metals pollution at Zagazig University, Zagazig, Egypt

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this study is to measure the levels of heavy metals (Fe, Mn, Zn, Cu and Pb) in common plantain (P. major L.) grown in meadowland sites in Zagazig University, Zagazig City, Sharkia governorate, Egypt, among seasons of year which this plant used as bioindicators and biomonitoring. The concentration of heavy metals in soil, roots, leaves and fruits of P. major was measured. The daily metal intake and the target hazard quotients for normal daily consumption of P. major were evaluated. The soils in the Zagazig University area are primarily contaminated by Fe, followed by Zn, Mn, Cu and Pb. Zn, Fe and Mn concentrations in most samples of P. major are above the permissible limit. The values of target hazard quotient for all examined samples of P. major (leaves, roots and fruits) were less than 1, with the exception of Mn (2.56) and Fe (1.45) in P. major leaves for adult human, Mn (3.08), Fe (1.75) and Pb (1.18) for children, which indicates the presence of potential health risk posed by Mn and Fe derived from consumption of contaminated P. major leaves for adult human and Mn, Fe and Pb for children. These results demonstrate that P. major can be used as a bioindicator and a biomonitor for ecotoxicological risk assessment of heavy metals in urban areas. Also, it can be taken as a guide of contamination with heavy metals in other vegetables and grains in urban areas.

Graphical Abstract

Risk assessment of heavy metals pollution at Zagazig University, Zagazig, Egypt

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alabdulaaly AI, Khan MA (2009) Heavy metals in cooler waters in Riyadh, Saudi Arabia. Environ Monitor Assess 157:23–28

    Article  CAS  Google Scholar 

  • Al-Jumaily EF, Hassan AA, Rana HR (2012) Extraction and purification of tannins from Plantago lanceolata L. and assessment their antibacterial activity on pathogenesis of enteropathogenic e.coli in vitro and in vivo. DAMA Int 1:2319–5037

    Google Scholar 

  • Alyemenia MN, Almohisen IAA (2014) Traffic and industrial activities around Riyadh cause the accumulation of heavy metals in legumes: a case study. Saudi J Biol Sci 21:167–172

    Article  CAS  Google Scholar 

  • Amusan AA, Bada SB, Salami A (2003) Effect of traffic density on heavy metal content of soil and vegetation along roadside in Osun state, Nigeria. West Afr J Appl Sci 4:107

    Google Scholar 

  • Andreazza R, Bortolon L, Pieniz S, Camargo FAO (2013) Use of high-yielding bio-energy plant castor bean (Ricinus communis L.) as a potential phytoremediator for copper-contaminated soils. Pedosphere 23:651–661

    Article  CAS  Google Scholar 

  • Annan K, Dickson DA, Amponsah IK, Nooni IK (2013) The heavy metal contents of some selected medicinal plants sampled from different geographical locations. Pharmacog Res 5(2):103–108

    Article  CAS  Google Scholar 

  • Antonious G, Kochhar T (2009) Mobility of heavy metals from soil into hot pepper fruits: a field study. Bull Environ Contam Toxicol 82:59–63

    Article  CAS  Google Scholar 

  • Arora M, Kiran B, Rani S, Rani A, Kaur B, Mittal N (2008) Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem 111:811–815

    Article  CAS  Google Scholar 

  • Baird C (2002) Environmental chemistry. Bookman, Porto Alegre

    Google Scholar 

  • Baye H, Hymete A (2013) Levels of heavy metals in common medicinal plants collected from environmentally different sites in Ethiopia. Mid East J Sci Res 13(7):938–943

    CAS  Google Scholar 

  • Beara IN, Lesjak MM, Orčić DZ, Simin NĐ, Četojević-Simin DD, Božin BN, Mimica-Dukić NM (2012) Comparative analysis of phenolic profile, antioxidant, anti-inflammatory and cytotoxic activity of two closely-related Plantain species: Plantago altissima L. and Plantago lanceolata L. LWT-Food Sci Technol 47:64–70

    Article  CAS  Google Scholar 

  • Bekteshi A, Gezim B (2013) Uptake of heavy metals from Plantago major in the region of Durres, Albania. Pol J Environ Stud 22(5):1881–1885

    CAS  Google Scholar 

  • Branquinho C, Serrano HC, Pinto MJ, Martins-Loucao MA (2007) Revisiting the plant hyper accumulation criteria to rare plants and earth abundant elements. Environ Pollut 146:437–443

    Article  CAS  Google Scholar 

  • Chary NS, Kamala CT, Raj DSS (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf 69:513–524

    Article  CAS  Google Scholar 

  • Chen M, Ma LQ (1998) Comparison of four EPA digestion methods for metal analysis using certified and Florida soils. J Environ Qual 27:1294–1300

    Article  CAS  Google Scholar 

  • Chen B, Wang X, Lee FSC (2001) Pyrolysis coupled with atomic absorption spectrometry for the determination of mercury in Chinese medical materials. Anal Chim Acta 447:161–169

    Article  CAS  Google Scholar 

  • Chen R, Wang X, Meng X, Hua J, Zhou Z, Chen B, Kan H (2013) Communicating air pollution-related health risks to the public. An application of the Air Quality Health Index in Shanghai, China. Environ Int 51:168–173

    Article  CAS  Google Scholar 

  • Chuparina EV, Aisueva TS (2011) Determination of heavy metal levels in medicinal plant Hemerocallis minor Miller by X-ray fluorescence spectrometry. Environ Chem Lett 9:19–23

    Article  CAS  Google Scholar 

  • Cocârţă D, Neamţu S, Reşetar Deac A (2016) Carcinogenic risk evaluation for human health risk assessment from soils contaminated with heavy metals. Int J Environ Sci Technol 13:2025–2036

    Article  CAS  Google Scholar 

  • Cui YJ, Zhu YG, Zhai RH, Chen DY, Huang YZ, Qui Y (2004) Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int 30(6):785–791

  • Da Silva FB, do Nascimento C, Araújo P, da Silva FL, Da Lima L (2017) Soil contamination by metals with high ecological risk in urban and rural area. Int J Environ Sci Technol 14:553–562

    Article  CAS  Google Scholar 

  • Dean JR (2007) Bioavailability, bioaccessibility and mobility of environmental contaminants, 1st edn. Wiley, London

  • Dimitrova I, Yurukova L (2005) Bioindication of anthropogenic pollution with Plantago lanceolata L. (Plantaginaceae): metal accumulation, morphological and stomatal leaf characteristics. Phytol Balc 11:89–96

    Google Scholar 

  • EPA (1989) Risk assessment guidance for superfund volume I: human health evaluation manual (Part A). Washington, DC: US Environmental Protection Agency, Office of Emergency and Remedial Response; Report nr EPA/540/1-89/002

  • EPA (2010a) The limits of pollutants in food. China: State Environmental Protection Administration GB2762

  • Ernst E (2002) Toxic heavy metals and undeclared drugs in Asian herbal medicines. Trends Pharmacol Sci 23:136–139

    Article  CAS  Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324

    Article  CAS  Google Scholar 

  • FAO/WHO (1984) Contaminants. In Codex Alimentarius, vol XVII, 1st edn 1. FAO/WHO, Codex Alimentarius Commision, Rome

  • FAO/WHO (1997) Food consumption and exposure assessment of chemicals. Report of FAO/WHO Consultation. WHO, Geneva, pp 17–25

    Google Scholar 

  • Farmaki EG, Thomaidis NS (2008) Current status of the metal pollution of the environment of Greece—a review. Global NEST J 10:366–375

    Google Scholar 

  • Fatemitalab R, Zare M, Kardar S (2016) Assessment of cadmium, zinc and lead contamination in leaf and root of four various species. Int J Environ Sci Technol 13:1229–1234

    Article  CAS  Google Scholar 

  • Feng J, Wang Y, Zhao J, Zhu L, Bian X, Zhang W (2011) Source attributions of heavy metals in rice plant along highway in Eastern China. J Environ Sci (China) 23:1158–1164

    Article  CAS  Google Scholar 

  • Filipović-Trajković R, Zoran S, Ljubomir Š, Snežana A (2012) The potential of different plant species for heavy metals accumulation and distribution. J Food Agric Environ 10(1):959–964

    Google Scholar 

  • Galal TM, Hanaa SS (2015) Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol Indic 48:244–251

    Article  CAS  Google Scholar 

  • Gálvez M, Martín-Cordero C, Houghton PJ, Ayusom MJ (2005) Antioxidant activity of methanol extracts obtained from Plantago species. J Agric Food Chem 53:1927–1933

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  CAS  Google Scholar 

  • Giri S, Singh A (2015) Human health risk and ecological risk assessment of metals in fishes, shrimps and sediment from a tropical river. Int J Environ Sci Technol 12:2349–2362

    Article  CAS  Google Scholar 

  • Granero S, Domingo JL (2002) Levels of metals in soils of Alcala’ de Henares, Spain:human health risks. Environ Int 28:159–164

    Article  CAS  Google Scholar 

  • Grzetic I, Ghariani RHA (2008) Potential health risk assessment for soil heavy metal contamination in the central zone of Belgrade (Serbia). J Serb Chem Soc 73(8–9):923–934

    Article  CAS  Google Scholar 

  • Guerra K, Konz J, Lisi K, Neebrem C (2010) Exposure factors handbook. USEPA, Washington, DC

    Google Scholar 

  • Gupta S, Nayek S, Saha RN, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739

    Article  CAS  Google Scholar 

  • Hang X, Huoyan W, Jianmin Z, Chengling M, Changwen D, Xiaoqin C (2009) Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environ Pollut 157:2542–2549

    Article  CAS  Google Scholar 

  • Hassan N, Ahmed K (2000) Intra familiar distribution of food in rural Bangladesh. Institute of Nutrition and food Science, University of Dhaka (Internet http://www.unu.edu/unpress/food/8F064e/)

  • Hassan Z, Anwar Z, Khattak KU, Islam M, Khan RU, Khattak JZK (2012) Civic pollution and its effect on water quality of river Toi at district Kohat, NWFP. Res J Environ Earth Sci 4(3):334–339

    Google Scholar 

  • Heimler D, Isolano L, Vignolini P, Tombelli S, Romani A (2007) Polyphenol content and antioxidative activity in some species of freshly consumed salads. J Agric Food Chem 55:1724–1729

    Article  CAS  Google Scholar 

  • Hoffmann D, Fnimh A (2003) Science and practice of herbal medicine. Healing Arts Press, Rochester, Vermont

  • Hora O, Friest W, Zwerger I (2006) Heavy metal contamination in the surroundings of a former Pb/Zn smelter in Arnoldstein (Austria): monitoring of bioavailable metal fractions in soils. In: Proc int symp trace elements in the food chain, May 25–27 (pp 191–195). Budapest

  • Hough RL, Breward N, Young SD, Crout NM, Tye AM, Moir AM, Thornton L (2004) Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ Health Perspect 112:215–221

    Article  CAS  Google Scholar 

  • Hu JQ, Cui HB, Li ZY (2002) Plantaginaceae. In Flora of China, 1st edn. Editorial Committee of flora of China in Chinese Academy of Sciences; Science Press: Beijing, China, vol 70, pp 322–343

  • Itanna F (2002) Metals in leafy vegetables grown in Addis Ababa and toxicology implementations. Ethiop J Health Dev 16:295–302

    Article  Google Scholar 

  • Jabeen S, Shah MT, Khan S, Hayat MQ (2010) Determination of major and trace elements in ten important folk therapeutic plants of Haripur basin, Pakistan. J Med Plants Res 4(7):559–566

    CAS  Google Scholar 

  • Jiménez MN, Bacchetta G, Casti M, Navarro FB, Lallena AM, Fernández-Ondono E (2011) Potential use in phytoremediation of three plant species growing on contaminated mine-tailing soils in Sardinia. Ecol Eng 37:392–398

    Article  Google Scholar 

  • Jozic M, Peer T, Turk R (2009) The impact of the tunnel exhausts in terms of heavy metals to the surrounding ecosystem. Environ Monit Assess 150:261–271

    Article  CAS  Google Scholar 

  • Jung C, Maeder V, Funk F, Frey B, Sticher H, Frossard E (2003) Release of phenols from Lupinus albus L. roots exposed to copper and their possible role in copper detoxification. Plant Soil 252:301–312

    Article  CAS  Google Scholar 

  • Kamachi H, Komori I, Tamura H, Sawa Y, Karahara I, Honma Y, Wada N, Kawabata T, Matsuda K, Ikeno S, Noguchi M, Inoue H (2005) Lead tolerance and accumulation in the gametophytes of the fern Athyrium yokoscense. J Plant Res 118:137–145

    Article  CAS  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692

    Article  CAS  Google Scholar 

  • Khan Sajjad, Farooq Robina, Shahbaz Shagufta, Aziz Mohammad, Sadique Maria (2009) Health risk assessment of heavy metals for population via consumption of vegetables. World Appl Sci J 6:1602–1606

    CAS  Google Scholar 

  • Khare CP (2004) Indian medicinal plants. Springer-Verlag, Berlin/Heidelberg. ISBN: 978-0-387-70637-5

  • Kobeasy O, Abdel-Fatah M, Samiha M, Abd El-Salam Z, El-Ola MM (2011) Biochemical studies on Plantago major L. and Cyamopsis tetragonoloba L. Int J Biodvers Conserv 3:83–91

    Google Scholar 

  • Kumar SR, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66:258–266

    Article  CAS  Google Scholar 

  • Kurteva MK (2009) Comparative study on Plantago major and P. lanceolata (Plantaginaceae) as bioindicators of the pollution in the region of the Asarel. Copper dressing works. Phytol Balc 15:261–271

    Google Scholar 

  • Lai HY, Hseu ZY, Chen TC, Chen BC, Guo HY, Chen ZS (2010) Health risk-based assessment and management of heavy metals-contaminated soil sites in Taiwan. Int J Environ Res Public Health 7(10):3595–3614

    Article  CAS  Google Scholar 

  • Laschober C, Limbeck A, Rendl J, Puxbaum H (2004) Particulate emissions from on-road vehicles in the Kaisermühlen-tunnel (Vienna, Austria). Atmos Environ 38:2187–2195

    Article  CAS  Google Scholar 

  • Lemly AD (1996) Evaluation of the hazard quotient method for risk assessment of selenium. Ecotoxicol Environ Saf 35:156–162

  • Li TQ, Yang XE, Jin XF, He ZL, Stoffella PJ, Hu QH (2005) Root response and metal accumulation in two contrasting ecotypes of Sedium alfredii Hance under lead and zinc stress. J Environ Sci Health 40(5):1081–1096

    Article  CAS  Google Scholar 

  • Li N, Yuan K, Weijian P, Lixuan Z, Qiuyun Z, Jiwen L (2015) Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Sci Total Environ 521–522:144–151

    Article  CAS  Google Scholar 

  • Lough G, Schauer JJ, Park JS, Shafer MM, Deminter JT, Weinstein J (2005) Emissions of metals associated with motor vehicle roadways. Environ Sci Technol 39:826–836

    Article  CAS  Google Scholar 

  • Malizia D, Giuliano A, Ortaggi G, Masotti A (2012) Common plants as alternative analytical tools to monitor heavy metals in soil. Chem Cent J 6(Suppl 2): 56, 3–1

  • Massadeh AM, Tahat M, Jaradat QM, Al-Momani IF (2004) Lead and cadmium contamination in roadside soils in Irbid City, Jordan: a case study. Soil Sed Contamin J 13:347–359

    Article  CAS  Google Scholar 

  • Mendoza RE, García IV, Cabo L, Weigandt CF, Iorio AF (2015) The interaction of heavy metals and nutrients present in soil and native plants with arbuscular mycorrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina). Sci Total Environ 505:555–564

    Article  CAS  Google Scholar 

  • Monacci OF, Bargagli R (1997) Barium and other trace metals as indicators of vehicle emissions. Water Air Soil Pollut 100:89–98

    Article  Google Scholar 

  • Mondol MN, Chamon AS, Faiz B, ElahI SF (2011) Seasonal variation of heavy metal concentrations in water and plant samples around Tejgaon industrial area of Bangladesh. J Bangladesh Acad Sci 35:19–41

    Article  CAS  Google Scholar 

  • Nanda S, Abraham A (2013) Remediation of heavy metal contaminated soil. Afr J Biotechnol 12(21):3099–3109

    CAS  Google Scholar 

  • National Research Council (NRC) (1984) Nutrient requirement for beef cattle, 6th rev. edn. Nutrient requirement of domestic animals. Natl Acad Sci Wash (4):421–427

  • Nema NK, Maity N, Sarkar BK, Mukherjee PK (2014) Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda. Toxicol Ind Health 30(10):964–968

    Article  CAS  Google Scholar 

  • Nyunt TM, Lwin KK, Aye TT, Than MA, Chit K, Kyaw T, Hlaing OMT, Wun M, Win NN (2007) Antihypertensive effect of Plantago major Linn. whole plant (Ahkyawpaung-tahtaung) on mild to moderate hypertensive patients. Myanmar Health Sci Res J 19:97–102

    Google Scholar 

  • Olowoyo JO, Okedeyi OO, Mkolo NM, Lion GN, Mdakane STR (2012) Uptake and translocation of heavy metals by medicinal plants growing around a waste dump site in Pretoria, South Africa. S Afr J Bot 78:116–121

    Article  CAS  Google Scholar 

  • Onwordi CT, Ngozi A, Isiaka A (2015) Levels of potentially toxic metals in selected herbal medicines In Lagos, Nigeria. J Nat Sci Res 5:148–156

    Google Scholar 

  • Perkin Elmer Instruments Manual (2002) Analytical methods for atomic absorption spectrometry, p 96

  • Peter BW (2005) Municipal solid waste compositing: potential effect of heavy metals in municipal solid waste composts on plants and environment. Boyce Thompson Institute for Plant Research at Cornell University, pp 1–5

  • Pierzynski GM, Sims JT, Vance GF (2000) Soils and environmental quality, 2nd edn. CRC Press, LLC, NW Corporate Blvd., Boca Raton, FL

  • Qishlaqi A, Moore F, Forghani G (2008) Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environ Monit Assess 141:257–273. doi:10.1007/s10661-007-9893-x

    Article  CAS  Google Scholar 

  • Rahib H, Seema AK, Muhammad TS, Liaqat A (2015) Multi-statistical approaches for environmental geochemical assessment of pollutants in soils of Gadoon Amazai Industrial Estate, Pakistan. J Soils Sediments 15:1119–1129

    Article  CAS  Google Scholar 

  • RAIS (2008) The risk assessment information system (2007) http://rais.ornl.gov/tools/tox_profiles.html. Accessed 04 Sep 2012

  • Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agriculture. Ecosyst Environ 109:310–322

    Article  CAS  Google Scholar 

  • Reddy PR, Reddy SJ (1997) Elemental concentrations in medicinally important leafy materials. Chemosphere 34:2193–2212

    Article  CAS  Google Scholar 

  • Robin DG, James CRS (2003) Trace element uptake and distribution in plant science. University of Adelaide Waite Campus, Adelaide

    Google Scholar 

  • Rodriguez L, Rincón J, Asencio I, Rodríguez-Castellanos L (2007) Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives. Int J Phytorem 9:1–13

    Article  CAS  Google Scholar 

  • Romeh A (2010) Phytoremediation of water and soil contaminated with imidacloprid pesticide by Plantago major L. Int J Phytoremediation 12:188–199

    Article  CAS  Google Scholar 

  • Romeh A (2014) Phytoremediation of cyanophos insecticide by Plantago major L. in water. J Environ Health Sci Eng 12:381–388

    Article  CAS  Google Scholar 

  • Romeh A (2015a) Evaluation of the phytoremediation potential of three plant species for azoxystrobin-contaminated soil. Int J Environ Sci Technol 12:3509–3518

    Article  CAS  Google Scholar 

  • Romeh A (2015b) Enhancing agents for phytoremediation of soil contaminated by cyanophos. Ecotoxicol Environ Saf 117:124–131

    Article  CAS  Google Scholar 

  • Romeh AA, Hendawi MY (2013) Chlorpyrifos insecticide uptake by plantain from polluted water and soil. Environ Chem Lett 11:163–170

    Article  CAS  Google Scholar 

  • Romeh AA, Magdi AK, Shawky MM (2016) Potential of Plantago major L. for Phytoremediation of lead-contaminated soil and water. Water Air Soil Pollut 227(1):1–9

    Article  CAS  Google Scholar 

  • Samuelsen AB (2000) The traditional uses, chemical constituents and biologicalactivities of Plantago major L.: a review. J. Ethnopharmacol 71:1–21

  • Santos EE, Lauria DC, Porto da Silveira CL (2004) Assessment of daily intake of trace elements due to consumption of foodstuffs by adult inhabitants of Rio de Janeiro city. Sci Total Environ 327:69–79

    Article  CAS  Google Scholar 

  • Saper RB, Kales SN, Paquin J, Burns MJ, Eisenberg DM, Davis RB, Phillips RS (2004) Heavy metal content of ayurvedic herbal medicine products. J Am Med Assoc 23:2868–2873

    Article  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Schumacher, M, Bosgue MA, Domingo JL, Corbella J (1991) Dietary intake of lead and calcium from foods in Tarragora Province, Spain. Bull Environ Contam Toxicol 46:320–328

  • Shah A, Niaz A, Ullah N, Rehman A, Akhlaq M, Zakir M, Khan MS (2013) Comparative study of heavy metals in soil and selected medicinal plants. J Chem 1–5

  • Sharifa AA, Neoh YL, Iswadi MI, Khairul O, Abdul Halim MM, Jamaludin MA, Hing HL (2008) Effects of methanol, ethanol and aqueous extract of Plantago major on gram positive bacteria, gram negative bacteria and yeast. Ann Microsc 8:42–44

    Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2009) Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chem Toxicol 47:583–591

    Article  CAS  Google Scholar 

  • Sheded GM, Pulford ID, Hamed IA (2006) Presence of major and trace elements in seven medicinal plants growing in the South-Eastern Desert, Egypt. J Arid Environ 66:210–217

    Article  Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Trop Ecol 51(2S):375–387

    CAS  Google Scholar 

  • Sipter E, Rózsa E, Gruiz K, Tátrai E, Morvai V (2008) Site-specific risk assessment in contaminated vegetable gardens. Chemosphere 71:1301–1307

    Article  CAS  Google Scholar 

  • Siromlya TI (2011) Influence of traffic pollution on ecological state of Plantago major L. Contemp Prob Ecol 18(5):677–688

    Google Scholar 

  • Song B, Lei M, Chen TB, Zheng YM, Xie YF, Li XY, Gao D (2009) Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China. J Environ Sci 21:1702–1709

  • SR EN ISO 6869 (2002) Animal feeding stuffs. Determination of the contents of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc—method using atomic absorption spectrometry (ISO 6869:2000)

  • Storelli MM (2008) Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafooconsumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem Toxicol 46:2782–2788

    Article  CAS  Google Scholar 

  • Subramanian R, Gayathri S, Rathnavel C, Raj V (2012) Analysis of mineral and heavy metals in some medicinal plants collected from local market. Asian Pac J Trop Biomed 2(1):S74–S78

    Article  Google Scholar 

  • Sun Y, Zhou Q, Xie X, Liu R (2010) Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mater 174:455–462

    Article  CAS  Google Scholar 

  • Tama’s J, Elza K (2005) In Z. Naturforsch (ed) Vegetation pattern and heavy metal accumulation at a mine tailing at Gyöngyösoroszi, Hungary 60c, pp 362–367

  • Tamura Y, Nishibe S (2002) Changes in the concentrations of bioactive compounds in plantain leaves. J Agric Food Chem 50:2514–2518

    Article  CAS  Google Scholar 

  • Tripathi RM, Raghunath R, Krishnamoorthy TM (1997) Dietary intake of heavy metals in Bombay city, India. Sci Total Environ 208:149–159

    Article  CAS  Google Scholar 

  • Tull D (1987) Edible and useful pants of Texas and the Southwest: a practical guide. University of Texas Press, Austin, p 131

    Google Scholar 

  • UNEP/FAO/WHO (1992) Assessment of dietary intake of chemical contaminants. WHO/HPP/FOS/92.6, UNEP/GEMS/92.F2. United Nations Environmental Program, Nairobi

  • U.S. Environmental Protection Agency (1997) Method 3051a: microwave assisted acid dissolution of sediments, sludges, soils, and oils, 2nd edn. U.S. Gov. Print Office, Washington, DC

    Google Scholar 

  • USDA (US Department of Agriculture) (2007) USDA nutrient database for standard reference, release 20. Riverdale, MD. http://www.ars.usda.gov/main/site_main.htm ?modecode = 12-35-45-00

  • USEPA (1989) Health effect assessments summary tables (HEAST) and user’s guide. Office of Emergency and Remedial Response, United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (2000) Risk-based concentration table. Philadelphia, PA; Washington DC, United States Environmental Protection Agency 2000

  • US-EPA, IRIS. United States, Environmental Protection Agency (2008) Integrated Risk Information System. http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris. show Substance List. Accessed Jan 2008

  • Velasco-Lezama R, Tapia-Aguilar R, Román-Ramos R, Vega-Avila E, Perez-Gutierrez MS (2006) Effect of Plantago major on cell proliferation in vitro. J Ethnopharmacol 103(1):36–42

    Article  CAS  Google Scholar 

  • Vousta D, Grimanins A, Sammara C (1996) Trace elements in vegetable grown in an industrial areas in relation to soil and air particulate matter. Environ Pollut 94(3):325–335

    Article  Google Scholar 

  • Wang H, Stuanes AO (2003) Heavy metal pollution in air-water-soil-plant system of Zhuzhou City, Hunan Province, China. Water Air Soil Pollut 147:159e164

  • Wang XL, Sato T, Xing BS, Tao S (2005) Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ 350:28–37

    Article  CAS  Google Scholar 

  • Wang X, Wang F, Chen B, Sun F, He W, Wen D, Liu X, Wang Q (2012) Comparing the health risk of toxic metals through vegetable consumption between industrial polluted and non-polluted fields in Shaoguan, South China. J Food Agric Environ 10(2):943–948

    CAS  Google Scholar 

  • WHO (2005) Quality control methods for medicinal plant materials. WHO, Geneva

    Google Scholar 

  • Wilson B, Pyatt FB (2007) Heavy metal dispersion, persistence, and bioaccumulation around an ancient copper mine situated in Anglesey, UK. Ecotoxicol Environ Saf 66(2):224–231

    Article  CAS  Google Scholar 

  • World Health Organization [WHO] (1993) Evaluation of certain food additives and contaminants. In: Forty-first report of the Joint FAO/WHO Expert Committee on Food Additives. WHO, Geneva, Switzerland (WHO Technical Series, p 837)

  • Xiong ZT (1998) Lead uptake and effects on seed germination and plant growth in a Pb hyper accumulator Brassica pekinensis Rupr. Bull Environ Contam Toxicol 60:285–291

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  Google Scholar 

  • Zeng L, Li N, Shao D, Kang Y, Zhang Q, Lu P, Li L, Luo J, Guo X (2014) Concentrations, sources, and risk assessment of polychlorinated biphenyls in vegetables near a waste-incinerator site, South China. Arch Environ Contam Toxicol 67:78–86

    Article  CAS  Google Scholar 

  • Zereini F, Wiseman CLS, Püttmann W (2007) Changes in palladium, platinum, and rhodium concentrations, and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Environ Sci Technol 41:451–456

    Article  CAS  Google Scholar 

  • Zerihun A, Chandravanshi BS, Debebe A, Mehari B (2015) Levels of selected metals in leaves of Cannabis sativa L. cultivated in Ethiopia. SpringerPlus 4:359–369

    Article  CAS  Google Scholar 

  • Zheng N, Wang QC, Zhang XW, Zheng DM, Zhang ZS, Zhang SQ (2007) Population health risk due to dietary intake of heavy metals in the industrial area of Huludao City, China. Sci Total Environ 387:96–104

    Article  CAS  Google Scholar 

  • Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is most grateful to the Professor Dr. Mustafa Abdel-Rahim, director of the Central Laboratory for soil, food and feedstuffs ISO-17025, Faculty of Development and Technology, Zagazig University, Zagazig, Egypt, for their collaboration in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. A. Romeh.

Additional information

Editorial responsibility: Agnieszka Galuszka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeh, A.A.A. Risk assessment of heavy metals pollution at Zagazig University, Zagazig, Egypt. Int. J. Environ. Sci. Technol. 15, 1393–1410 (2018). https://doi.org/10.1007/s13762-017-1489-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1489-6

Keywords

Navigation