Skip to main content
Log in

Natural pigments in dye-sensitized solar cell (DSSC): a DFT-TDDFT study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The molecular structures and photophysical properties of twelve types of the dyes from natural pigments of chlorophyll, flavonoid, carotenoid and anthocyanin were calculated with density functional theory (DFT) and time-dependent DFT (TD-DFT). Based on the comparison and better agreement between experimental wavelengths of maximum absorption and their calculated values with functionals of B3LYP, CAM-B3LYP and BHand-H, the B3LYP/6-31G** level was chosen for the process of our studies. The dyes’ properties in solvent environment were carried out using conductor-like polarizable continuum model methods (CPCM-DFT and TD-CPCM-DFT). The results show that pigment type affects the photophysical properties, and the dyes of a specific pigment type have nearly the same properties. Anthocyanins have the highest values of ionization potential (IP), electron affinity (EA), electronic chemical potential (µ) (their absolute values), chemical hardness (η), electrophilicity index (ω), electroaccepting power (ω+) and electrodonating power (ω), which can lead to high efficiency of these dyes type for dye-sensitized solar cells (DSSCs). Energy gap of ELUMO and EHOMO of the dyes respectively with the conduction band edge of TiO2 (ECB) and Eredox of \(\left(\tt {I^ - }/I_{3}^{ - }\right)\) couple (ΔEL and ΔEH), the free energy difference for electron injection (ΔGinject) and the driving force for dye regeneration (ΔGreg), the maximum absorption wavelengths of peaks (λmax) and oscillator strength values (f) for all the dyes in gas, acetonitrile and water phases were calculated and explained. These parameters show that carotenoids, chlorophylls and anthocyanins are more appropriate pigments than flavonoid pigment and the estimated open-circuit photo-voltage values (eVoc) showed that flavonoids are the desirable pigment. We expect these results could be helpful for DSSC producers to choose highly efficient natural dyes according to their optical and electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Mahmood, Sol. Energy 123, 127 (2016)

    Article  CAS  Google Scholar 

  2. S. Shalini, R. Balasundara prabhu, S. Prasanna, T.K. Mallick, S. Senthilarasu, Renew. Sust. Energ. Rev. 51, 1306 (2015)

    Article  CAS  Google Scholar 

  3. H. Hug, M. Bader, P. Mair, T. Glatzel, Appl. Energy 115, 216 (2014)

    Article  CAS  Google Scholar 

  4. P. Pounraj, V. Mohankumar, M. Senthil Pandian, P. Ramasamy, J. Mol. Graph. Model. 79, 235 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. N.T.R.N. Kumara, A. Lim, C.M. Lim, M.I. Petra, P. Ekanayake, Renew. Sust. Energ. Rev. 78, 301 (2017)

    Article  CAS  Google Scholar 

  6. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian Inc., Wallingford,(2004)

    Google Scholar 

  7. M. Karelson, V.S. Lobanov, A.R. Katritzky, Chem. Rev. 96, 1027 (1996)

    Article  CAS  PubMed  Google Scholar 

  8. M. Grätzel, Nature 414, 338 (2001)

    Article  PubMed  Google Scholar 

  9. D. Cahen, G. Hodes, M. Grätzel, J.F. Guillemoles, I. Riess, J. Phys. Chem. B 104, 2053 (2000)

    Article  CAS  Google Scholar 

  10. L. Yuanzuo, L. Yuanchao, S. Peng, M. Fengcai, L. Jianping, S. Mengtao, RSC. Adv. 7, 20520 (2017)

    Article  Google Scholar 

  11. R.G. Pearson, W.E. Palke, J. Phys. Chem. 96, 3283 (1992)

    Article  CAS  Google Scholar 

  12. R.K. Roy, S. Krishnamurti, P. Geerlings, S. Pal, J. Phys. Chem. A 102, 3746 (1998)

    Article  CAS  Google Scholar 

  13. J.L. Gázquez, A. Cedillo, A. Vela, J. Phys. Chem. A 111, 1966 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. R.G. Parr, V.L. Szentpály, S.B. Liu, ‎J. Am. Chem. Soc. 121, 1922 (1999)

    Article  CAS  Google Scholar 

  15. J. Preat, D. Jacquemina, E.A. Perpète, Energy Environ. 3, 891 (2010)

    Article  CAS  Google Scholar 

  16. J.i. Zhang, Y.-H. Kan, H.-B. Li, Y. Geng, Y. Wu, Z.-M. Su, Dyes Pigm. 95, 313 (2012)

    Article  CAS  Google Scholar 

  17. C.-R. Zhang, Z.-J. Liu, Y.-H. Chen, H.-S. Chen, Y.-Z. Wu, W.J. Feng, D.-B. Wang, Curr. Appl. Phys. 10, 77 (2010)

    Article  CAS  Google Scholar 

  18. W. Sang-aroon, S. Saekow, V. Amornkitbamrung, J. Photochem. Photobiol. A 236, 35 (2012)

    Article  CAS  Google Scholar 

  19. S. Wei, K. Li, X. Lu, Z. Zhao, Y. Shao, Y. Dang, S. Li, W. Guo, Mater. Chem. Phys. 173, 139 (2016)

    Article  CAS  Google Scholar 

  20. H. Reiss, A. Heller, J. Phys. Chem. 89, 4207 (1985)

    Article  CAS  Google Scholar 

  21. Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, P. Wang, J. Am. Chem. Soc. 133, 11442 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. A. Islam, H. Sugihara, H. Arakawa, J. Photochem. Photobiol. A Chem. 158, 131 (2003)

    Article  CAS  Google Scholar 

  23. I.N. Obotowo, I.B. Obot, U.J. Ekpe, J. Mol. Struct. 1122, 80 (2016)

    Article  CAS  Google Scholar 

  24. A. Galano, R. Vargas, A. Martínez, Phys. Chem. Chem. Phys. 12, 193 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. A. Martínez, R. Vargas, A. Galano, J. Phys. Chem. B 113, 12113 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. H. Tributsch, Photochem. Photobiol. 16, 261 (1972)

    Article  CAS  Google Scholar 

  27. H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo, Y.J. Lo, J. Alloy. Compd. 495, 606 (2010)

    Article  CAS  Google Scholar 

  28. A.R. Hernandez-Martinez, M. Estevez, S. Vargas, F. Quintanilla, R. Rodriguez, Int. J. Mol. Sci. 12, 5565 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A.O. Boyo, I.O. Abdulsalami, T. Oluwa, S.O. Oluwole, A. Umar, Sci. J. Phys. (2013) https://doi.org/10.7237/sjp/182 Article ID sjp-182

    Article  Google Scholar 

  30. M. Narayan, A. Raturi, Appl. Solar Energy 7, 112 (2011)

    Article  Google Scholar 

  31. V. Shanmugan, M. Subbaiah, A. Sambandam, M. Ramaswamy, Spectrochim. Acta A Mol. Biomol. Spectrosc. 104, 35 (2013)

    Article  CAS  Google Scholar 

  32. N.M. Gomez-Ortiz, I.A. Vazquez-Maldonado, A.R. Perez-Espadas, G.J. Mena-Rejon, J.A. Azamar-Barrios, G. Oskam, Sol. Energy Mater. Sol. Cells. 94 l, 40 (2010)

    Article  CAS  Google Scholar 

  33. A.R. Hernández-Martínez, M. Estevez, S. Vargas, F. Quintanilla, R. Rodríguez, in First international congress on instrumentation and applied sciences 10, 38 (2012)

  34. R. Grünwald, H. Tributsch, J. Phys. Chem. 101, 2564 (1997)

    Article  Google Scholar 

  35. Z. Huizhi, L. Wu, Y. Gao, T. Ma, J. Photochem. Photobiol. A Chem. 219, 188 (2011)

    Article  CAS  Google Scholar 

  36. S. Hao, J. Wu, Y. Huang, J. Lin, Sol. Energy 80, 209 (2006)

    Article  CAS  Google Scholar 

  37. S. Meng, J. Ren, E. Kaxiras, Nano Lett. 8, 3266 (2008)

    Article  CAS  PubMed  Google Scholar 

  38. P. Prajongtat, S. Suramitr, S. Nokbin, K. Nakajima, K. Mitsuke, S. Hannongbua, J. Mol. Graph. Model. 76, 551 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. N. Mohammadi, P.J. Mahon, F. Wang, J. Mol. Graph. Model. 40, 64 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. S. Hwang, J.H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. Lee, W. Lee, J. Park, K. Kim, N. Park, C. Kim, Chem. Commun. 4887 (2007)

  41. W. Fan, D. Tan, Q. Zhang, H. Wang, J. Mol. Graph. Model. 57, 62 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. A. Fukui, R. Komiya, R. Yamanaka, A. Islam, L. Han, Sol. Energy Mater. Sol. Cells 90, 649 (2006)

    Article  CAS  Google Scholar 

  43. Z. Kebedea, S.-E. Lindquistb, Sol. Energy Mater. Sol. Cells 57, 259 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Zanjanchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13738_2018_1561_MOESM1_ESM.docx

Supplementary material 1 The UV–Vis absorption spectra of the dyes in the acetonitrile and water solvents are shown in Figs. S1 and S2, respectively (DOCX 3647 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanjanchi, F., Beheshtian, J. Natural pigments in dye-sensitized solar cell (DSSC): a DFT-TDDFT study. J IRAN CHEM SOC 16, 795–805 (2019). https://doi.org/10.1007/s13738-018-1561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1561-2

Keywords

Navigation