Skip to main content

Advertisement

Log in

Responses to Hypoxia: How Fructose Metabolism and Hypoxia-Inducible Factor-1a Pathways Converge in Health and Disease

  • REVIEW
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Oxygen is critical for the high output of energy (adenosine triphosphate) generated by oxidative phosphorylation in the mitochondria, and when oxygen delivery is impaired due to systemic hypoxia, impaired or reduced delivery of red blood cells, or from local ischemia, survival processes are activated.

Recent Findings

One major mechanism is the activation of hypoxia-inducible factors (HIFs) that act to reduce oxygen needs by blocking mitochondrial function and stimulating glucose uptake and glycolysis while also stimulating red blood cell production and local angiogenesis. Recently, endogenous fructose production with uric acid generation has also been shown to occur in hypoxic and ischemic tissues where it also appears to drive the same functions, and indeed, there is evidence that many of hypoxia-inducible factors effects may be mediated by the stimulation of fructose production and metabolism. Unfortunately, while being acutely protective, these same systems in overdrive lead to chronic inflammation and disease and may also be involved in the development of metabolic syndrome and related disease. The benefit of SGLT2 inhibitors may act in part by reducing the delivery of glucose with the stimulation of fructose formation, thereby allowing a conversion from the glycolytic metabolism to one involving mitochondrial metabolism.

Summary

The use of hypoxia-inducible factor stabilizers is expected to aid the treatment of anemia but, in the long-term, could potentially lead to worsening cardiovascular and metabolic outcomes. We suggest more studies are needed on the use of these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bhutta BS, Alghoula F, Berim I. Hypoxia. Treasure island (FL): StatPearls; 2021.

    Google Scholar 

  2. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med. 2004;36(1):1–12.

    Article  PubMed  Google Scholar 

  4. Koong AC, Chen EY, Giaccia AJ. Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res. 1994;54(6):1425–30.

    CAS  PubMed  Google Scholar 

  5. Culver C, Sundqvist A, Mudie S, Melvin A, Xirodimas D, Rocha S. Mechanism of hypoxia-induced NF-kappaB. Mol Cell Biol. 2010;30(20):4901–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5(5):378–89.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Min J, Zeng T, Roux M, Lazar D, Chen L, Tudzarova S. The role of HIF1α-PFKFB3 pathway in diabetic retinopathy. J Clin Endocrinol Metab. 2021;106(9):2505–19.

    Article  PubMed  PubMed Central  Google Scholar 

  8. • Nomoto H, Pei L, Montemurro C, Rosenberger M, Furterer A, Coppola G, et al. Activation of the HIF1α/PFKFB3 stress response pathway in beta cells in type 1 diabetes. Diabetologia. 2020;63(1):149–61. The conserved pro-survival HIF1α-mediated injury-response signalling is activated in beta cells in type 1 diabetes and likely contributes to the relatively slow rate of beta cell loss at the expense of early defective glucose-induced insulin secretion.

  9. Kierans S, Taylor C. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol. 2021;599(1):23–37.

    Article  CAS  PubMed  Google Scholar 

  10. • McGettrick AF, O'Neill LAJ. The role of HIF in immunity and inflammation. Cell Metab. 2020;32(4):524–36. HIF is one of the key regulator of immune cell function.

  11. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41(4):518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnson RJ, Stenvinkel P, Andrews P, Sanchez-Lozada LG, Nakagawa T, Gaucher E, et al. Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts. J Intern Med. 2020;287(3):252–62.

    Article  CAS  PubMed  Google Scholar 

  13. Nakagawa T, Tuttle KR, Short RA, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol. 2005;1(2):80–6.

    Article  CAS  PubMed  Google Scholar 

  14. Perheentupa J, Raivio K. Fructose-induced hyperuricaemia. Lancet. 1967;2(7515):528–31.

    Article  CAS  PubMed  Google Scholar 

  15. Fox IH, Kelley WN. Studies on the mechanism of fructose-induced hyperuricemia in man. Metabolism. 1972;21(8):713–21.

    Article  CAS  PubMed  Google Scholar 

  16. van den Berghe G, Bronfman M, Vanneste R, Hers HG. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J. 1977;162(3):601–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Emmerson BT. Effect of oral fructose on urate production. Ann Rheum Dis. 1974;33(3):276–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mayes PA. Intermediary metabolism of fructose. Am J Clin Nutr. 1993;58(5 Suppl):754S-S765.

    Article  CAS  PubMed  Google Scholar 

  19. Sun SZ, Empie MW. Fructose metabolism in humans - what isotopic tracer studies tell us. Nutr Metab (Lond). 2012;9(1):89.

    Article  PubMed  Google Scholar 

  20. Park TJ, Reznick J, Peterson BL, Blass G, Omerbasic D, Bennett NC, et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science. 2017;356(6335):307–11.

    Article  CAS  PubMed  Google Scholar 

  21. Nakagawa T, Lanaspa MA, Millan IS, Fini M, Rivard CJ, Sanchez-Lozada LG, et al. Fructose contributes to the Warburg effect for cancer growth. Cancer Metab. 2020;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goncalves MD, Lu C, Tutnauer J, Hartman TE, Hwang SK, Murphy CJ, et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science. 2019;363(6433):1345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci USA. 2018;115(12):3138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lanaspa MA, Ishimoto T, Li N, Cicerchi C, Orlicky DJ, Ruzycki P, et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat Commun. 2013;4:2434.

    Article  PubMed  Google Scholar 

  25. Andres-Hernando A, Li N, Cicerchi C, Inaba S, Chen W, Roncal-Jimenez C, et al. Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice. Nat Commun. 2017;8:14181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roncal Jimenez CA, Ishimoto T, Lanaspa MA, Rivard CJ, Nakagawa T, Ejaz AA, et al. Fructokinase activity mediates dehydration-induced renal injury. Kidney Int. 2014;86(2):294–302.

    Article  CAS  PubMed  Google Scholar 

  27. Lanaspa MA, Ishimoto T, Cicerchi C, Tamura Y, Roncal-Jimenez CA, Chen W, et al. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J Am Soc Nephrol. 2014;25(11):2526–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985;312(3):159–63.

    Article  CAS  PubMed  Google Scholar 

  29. Diggle CP, Shires M, Leitch D, Brooke D, Carr IM, Markham AF, et al. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J Histochem Cytochem. 2009;57(8):763–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mirtschink P, Krishnan J, Grimm F, Sarre A, Hörl M, Kayikci M, et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature. 2015;522(7557):444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mirtschink P, Krek W. Hypoxia-driven glycolytic and fructolytic metabolic programs: Pivotal to hypertrophic heart disease. Biochim Biophys Acta. 2016 Jul;1863(7 Pt B):1822-8. https://doi.org/10.1016/j.bbamcr.2016.02.011. Epub 2016 Feb 16. PMID: 26896647.

  32. Eberhart T, Schönenberger MJ, Walter KM, Charles KN, Faust PL, Kovacs WJ. Peroxisome-deficiency and HIF-2α signaling are negative regulators of ketohexokinase expression. Front Cell Dev Biol. 2020;8:566.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wood IS, Wang B, Lorente-Cebrian S, Trayhurn P. Hypoxia increases expression of selective facilitative glucose transporters (GLUT) and 2-deoxy-D-glucose uptake in human adipocytes. Biochem Biophys Res Commun. 2007;361(2):468–73.

    Article  PubMed  Google Scholar 

  34. Mirtschink P, Krek W. Hypoxia-driven glycolytic and fructolytic metabolic programs: pivotal to hypertrophic heart disease. Biochim Biophys Acta. 2016;1863(7 Pt B):1822–8.

    Article  CAS  PubMed  Google Scholar 

  35. Mirtschink P, Jang C, Arany Z, Krek W. Fructose metabolism, cardiometabolic risk, and the epidemic of coronary artery disease. Eur Heart J. 2018;39(26):2497–505.

    Article  CAS  PubMed  Google Scholar 

  36. Doke T, Ishimoto T, Hayasaki T, Ikeda S, Hasebe M, Hirayama A, Soga T, Kato N, Kosugi T, Tsuboi N, Lanaspa MA, Johnson RJ, Kadomatsu K, Maruyama S. Lacking ketohexokinase-A exacerbates renal injury in streptozotocin-induced diabetic mice. Metabolism. 2018 Aug;85:161-170. https://doi.org/10.1016/j.metabol.2018.03.020. Epub 2018 Mar 29. PMID: 29604362; PMCID: PMC6394855.

  37. Baryla I, Pluciennik E, Kośla K, Wojcik M, Zieleniak A, Zurawska-Klis M, et al. Identification of a novel association for the WWOX/HIF1A axis with gestational diabetes mellitus (GDM). PeerJ. 2021;9:e10604.

    Article  PubMed  PubMed Central  Google Scholar 

  38. •• Moldogazieva NT, Mokhosoev IM, Terentiev AA. Metabolic heterogeneity of cancer cells: an interplay between HIF-1, GLUTs, and AMPK. Cancers. 2020;12(4):862. Hypoxia-inducible factor-1 (HIF-1) and AMP-activated protein kinase (AMPK) represent key modulators of a switch between reprogrammed and oxidative metabolism.

  39. Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018;68(5):1063–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang CH, Liu HM, Chang ZY, Huang TH, Lee TY. Losartan prevents hepatic steatosis and macrophage polarization by inhibiting HIF-1alpha in a murine model of NAFLD. Int J Mol Sci. 2021;22(15):7841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun. 2017;8(1):1769.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006;17(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  43. Vinovskis C, Li LP, Prasad P, Tommerdahl K, Pyle L, Nelson RG, et al. Relative hypoxia and early diabetic kidney disease in type 1 diabetes. Diabetes. 2020;69(12):2700–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu J, Wei Q, Guo C, Dong G, Liu Y, Tang C, et al. Hypoxia, HIF, and associated signaling networks in chronic kidney disease. Int J Mol Sci. 2017;18(5):950.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.

    Article  CAS  PubMed  Google Scholar 

  46. Naudi A, Jove M, Ayala V, Cassanye A, Serrano J, Gonzalo H, et al. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res. 2012;2012:696215.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes. 2015;64(3):663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sas KM, Kayampilly P, Byun J, Nair V, Hinder LM, Hur J, et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight. 2016;1(15):e86976.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ding H, Jiang L, Xu J, Bai F, Zhou Y, Yuan Q, et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am J Physiol Renal Physiol. 2017;313(3):F561–75.

    Article  CAS  PubMed  Google Scholar 

  51. Roncal-Jimenez CA, Ishimoto T, Lanaspa MA, Milagres T, Hernando AA, Jensen T, et al. Aging-associated renal disease in mice is fructokinase dependent. Am J Physiol Renal Physiol. 2016;311(4):F722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee TS, Lu TM, Chen CH, Guo BC, Hsu CP. Hyperuricemia induces endothelial dysfunction and accelerates atherosclerosis by disturbing the asymmetric dimethylarginine/dimethylarginine dimethyl aminotransferase 2 pathway. Redox Biol. 2021;46:102108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maruhashi T, Hisatome I, Kihara Y, Higashi Y. Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis. 2018;278:226–31.

    Article  CAS  PubMed  Google Scholar 

  54. Sanchez-Lozada LG, Lanaspa MA, Cristobal-Garcia M, Garcia-Arroyo F, Soto V, Cruz-Robles D, et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol. 2012;121(3–4):e71–8.

    Article  CAS  PubMed  Google Scholar 

  55. Sanchez-Lozada LG, Tapia E, Santamaria J, Avila-Casado C, Soto V, Nepomuceno T, et al. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int. 2005;67(1):237–47.

    Article  PubMed  Google Scholar 

  56. Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011;58(5):784–90.

    Article  CAS  PubMed  Google Scholar 

  57. Aşcı H, Saygın M, Yeşilot Ş, Topsakal Ş, Cankara FN, Özmen Ö, et al. Protective effects of aspirin and vitamin C against corn syrup consumption-induced cardiac damage through sirtuin-1 and HIF-1α pathway. Anatol J Cardiol. 2016;16(9):648–54.

    PubMed  Google Scholar 

  58. Tanabe J, Ogura Y, Nakabayashi M, Nagai Y, Watanabe S, Sugaya T, et al. The possibility of urinary liver-type fatty acid-binding protein as a biomarker of renal hypoxia in spontaneously diabetic torii fatty rats. Kidney Blood Press Res. 2019;44(6):1476–92.

    Article  CAS  PubMed  Google Scholar 

  59. Nakagawa T, Sanchez-Lozada LG, Andres-Hernando A, Kojima H, Kasahara M, Rodriguez-Iturbe B, et al. Endogenous fructose metabolism could explain the Warburg effect and the protection of SGLT2 inhibitors in chronic kidney disease. Front Immunol. 2021;12:694457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marton A, Kaneko T, Kovalik JP, Yasui A, Nishiyama A, Kitada K, et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat Rev Nephrol. 2021;17(1):65–77.

    Article  CAS  PubMed  Google Scholar 

  61. Bessho R, Takiyama Y, Takiyama T, Kitsunai H, Takeda Y, Sakagami H, et al. Hypoxia-inducible factor-1alpha is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep. 2019;9(1):14754.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cai T, Ke Q, Fang Y, Wen P, Chen H, Yuan Q, et al. Sodium-glucose cotransporter 2 inhibition suppresses HIF-1alpha-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. Cell Death Dis. 2020;11(5):390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Akakura N, Kobayashi M, Horiuchi I, Suzuki A, Wang J, Chen J, et al. Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res. 2001;61(17):6548–54.

    CAS  PubMed  Google Scholar 

  64. Seo M, Kim JD, Neau D, Sehgal I, Lee YH. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. PLoS ONE. 2011;6(9):e24179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alvarez R, Mandal D, Chittiboina P. Canonical and non-canonical roles of PFKFB3 in brain tumors. Cells. 2021;10(11):2913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang H, Lu C, Fang M, Yan W, Chen M, Ji Y, et al. HIF-1α activates hypoxia-induced PFKFB4 expression in human bladder cancer cells. Biochem Biophys Res Commun. 2016;476(3):146–52.

    Article  CAS  PubMed  Google Scholar 

  67. Yan S, Zhang P, Xu W, Liu Y, Wang B, Jiang T, et al. Serum uric acid increases risk of cancer incidence and mortality: a systematic review and meta-analysis. Mediators Inflamm. 2015;2015:764250.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kobylecki CJ, Afzal S, Nordestgaard BG. Plasma urate, cancer incidence, and all-cause mortality: a Mendelian randomization study. Clin Chem. 2017;63(6):1151–60.

    Article  CAS  PubMed  Google Scholar 

  69. Fini MA, Lanaspa MA, Gaucher EA, Boutwell B, Nakagawa T, Wright RM, et al. Brief report: the uricase mutation in humans increases our risk for cancer growth. Cancer Metab. 2021;9(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pral LP, Fachi JL, Correa RO, Colonna M, Vinolo MAR. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions. Trends Immunol. 2021;42(7):604–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Todoric J, Di Caro G, Reibe S, Henstridge DC, Green CR, Vrbanac A, et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat Metab. 2020;2(10):1034–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5):662–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Johnson RJ, Rivard C, Lanaspa MA, Otabachian-Smith S, Ishimoto T, Cicerchi C, et al. Fructokinase, fructans, intestinal permeability, and metabolic syndrome: an equine connection? J Equine Vet Science. 2013;33(2):120–6.

    Article  Google Scholar 

  74. Jones N, Blagih J, Zani F, Rees A, Hill DG, Jenkins BJ, et al. Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation. Nat Commun. 2021;12(1):1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Joosten LAB, Crisan TO, Bjornstad P, Johnson RJ. Asymptomatic hyperuricaemia: a silent activator of the innate immune system. Nat Rev Rheumatol. 2020;16(2):75–86.

    Article  CAS  PubMed  Google Scholar 

  76. Netea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA, Joosten LA. Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol. 2015;33:49–77.

    Article  CAS  PubMed  Google Scholar 

  77. Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41(6):1287–93.

    Article  CAS  PubMed  Google Scholar 

  78. Maxwell PH, Eckardt KU. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol. 2016;12(3):157–68.

    Article  CAS  PubMed  Google Scholar 

  79. Akizawa T, Tsubakihara Y, Nangaku M, Endo Y, Nakajima H, Kohno T, et al. Effects of daprodustat, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor on anemia management in Japanese hemodialysis subjects. Am J Nephrol. 2017;45(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  80. Meadowcroft AM, Cizman B, Holdstock L, Biswas N, Johnson BM, Jones D, et al. Daprodustat for anemia: a 24-week, open-label, randomized controlled trial in participants on hemodialysis. Clin Kidney J. 2019;12(1):139–48.

    Article  CAS  PubMed  Google Scholar 

  81. Holdstock L, Meadowcroft AM, Maier R, Johnson BM, Jones D, Rastogi A, et al. Four-week studies of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 for treatment of anemia. J Am Soc Nephrol. 2016;27(4):1234–44.

    Article  CAS  PubMed  Google Scholar 

  82. Martin ER, Smith MT, Maroni BJ, Zuraw QC, deGoma EM. Clinical trial of vadadustat in patients with anemia secondary to stage 3 or 4 chronic kidney disease. Am J Nephrol. 2017;45(5):380–8.

    Article  CAS  PubMed  Google Scholar 

  83. Pergola PE, Spinowitz BS, Hartman CS, Maroni BJ, Haase VH. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int. 2016;90(5):1115–22.

    Article  CAS  PubMed  Google Scholar 

  84. Akizawa T, Nangaku M, Yamaguchi T, Arai M, Koretomo R, Maeda K, et al. Enarodustat, conversion and maintenance therapy for anemia in hemodialysis patients: a randomized, placebo-controlled phase 2b trial followed by long-term trial. Nephron. 2019;143(2):77–85.

    Article  CAS  PubMed  Google Scholar 

  85. Besarab A, Provenzano R, Hertel J, Zabaneh R, Klaus SJ, Lee T, et al. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol Dial Transplant. 2015;30(10):1665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen N, Qian J, Chen J, Yu X, Mei C, Hao C, et al. Phase 2 studies of oral hypoxia-inducible factor prolyl hydroxylase inhibitor FG-4592 for treatment of anemia in China. Nephrol Dial Transplant. 2017;32(8):1373–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Akizawa T, Macdougall IC, Berns JS, Bernhardt T, Staedtler G, Taguchi M, et al. Long-term efficacy and safety of molidustat for anemia in chronic kidney disease: DIALOGUE extension studies. Am J Nephrol. 2019;49(4):271–80.

    Article  CAS  PubMed  Google Scholar 

  88. Parmar DV, Kansagra KA, Patel JC, Joshi SN, Sharma NS, Shelat AD, et al. Outcomes of desidustat treatment in people with anemia and chronic kidney disease: a phase 2 study. Am J Nephrol. 2019;49(6):470–8.

    Article  CAS  PubMed  Google Scholar 

  89. Macdougall IC, Akizawa T, Berns JS, Bernhardt T, Krueger T. Effects of molidustat in the treatment of anemia in CKD. Clin J Am Soc Nephrol. 2019;14(1):28–39.

    Article  CAS  PubMed  Google Scholar 

  90. Holdstock L, Cizman B, Meadowcroft AM, Biswas N, Johnson BM, Jones D, et al. Daprodustat for anemia: a 24-week, open-label, randomized controlled trial in participants with chronic kidney disease. Clin Kidney J. 2019;12(1):129–38.

    Article  CAS  PubMed  Google Scholar 

  91. Chen N, Hao C, Liu BC, Lin H, Wang C, Xing C, et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N Engl J Med. 2019;381(11):1011–22.

    Article  CAS  PubMed  Google Scholar 

  92. Provenzano R, Besarab A, Sun CH, Diamond SA, Durham JH, Cangiano JL, et al. Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin J Am Soc Nephrol. 2016;11(6):982–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang B, Yin Q, Han YC, Wu M, Li ZL, Tu Y, et al. Effect of hypoxia-inducible factor-prolyl hydroxylase inhibitors on anemia in patients with CKD: a meta-analysis of randomized controlled trials including 2804 patients. Ren Fail. 2020;42(1):912–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hasegawa S, Tanaka T, Nangaku M. Hypoxia-inducible factor stabilizers for treating anemia of chronic kidney disease. Curr Opin Nephrol Hypertens. 2018;27(5):331–8.

    Article  CAS  PubMed  Google Scholar 

  95. Kular D, Macdougall IC. HIF stabilizers in the management of renal anemia: from bench to bedside to pediatrics. Pediatr Nephrol. 2019;34(3):365–78.

    Article  PubMed  Google Scholar 

  96. Yang Y, Yu X, Zhang Y, Ding G, Zhu C, Huang S, et al. Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against cisplatin-induced acute kidney injury. Clin Sci (Lond). 2018;132(7):825–38.

    Article  CAS  PubMed  Google Scholar 

  97. Miao AF, Liang JX, Yao L, Han JL, Zhou LJ. Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against renal ischemia/reperfusion injury by inhibiting inflammation. Ren Fail. 2021;43(1):803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jamadarkhana P, Chaudhary A, Chhipa L, Dubey A, Mohanan A, Gupta R, et al. Treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates ischemic acute kidney injury. Am J Nephrol. 2012;36(3):208–18.

    Article  CAS  PubMed  Google Scholar 

  99. Schley G, Klanke B, Schödel J, Forstreuter F, Shukla D, Kurtz A, et al. Hypoxia-inducible transcription factors stabilization in the thick ascending limb protects against ischemic acute kidney injury. J Am Soc Nephrol. 2011;22(11):2004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu M, Chen W, Miao M, Jin Q, Zhang S, Bai M, et al. Anti-anemia drug FG4592 retards the AKI-to-CKD transition by improving vascular regeneration and antioxidative capability. Clin Sci (Lond). 2021;135(14):1707–26.

    Article  CAS  PubMed  Google Scholar 

  101. Hasegawa S, Tanaka T, Saito T, Fukui K, Wakashima T, Susaki EA, et al. The oral hypoxia-inducible factor prolyl hydroxylase inhibitor enarodustat counteracts alterations in renal energy metabolism in the early stages of diabetic kidney disease. Kidney Int. 2020;97(5):934–50.

    Article  CAS  PubMed  Google Scholar 

  102. Rahtu-Korpela L, Karsikas S, Horkko S, Blanco Sequeiros R, Lammentausta E, Makela KA, et al. HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. Diabetes. 2014;63(10):3324–33.

    Article  CAS  PubMed  Google Scholar 

  103. Saito Y, Takasawa A, Takasawa K, Aoyama T, Akimoto T, Ota M, et al. Aldolase A promotes epithelial-mesenchymal transition to increase malignant potentials of cervical adenocarcinoma. Cancer Sci. 2020;111(8):3071–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hölscher M, Schäfer K, Krull S, Farhat K, Hesse A, Silter M, et al. Unfavourable consequences of chronic cardiac HIF-1α stabilization. Cardiovasc Res. 2012;94(1):77–86.

    Article  PubMed  Google Scholar 

  105. Bao W, Qin P, Needle S, Erickson-Miller CL, Duffy KJ, Ariazi JL, et al. Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat. J Cardiovasc Pharmacol. 2010;56(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  106. Moslehi J, Minamishima YA, Shi J, Neuberg D, Charytan DM, Padera RF, et al. Loss of hypoxia-inducible factor prolyl hydroxylase activity in cardiomyocytes phenocopies ischemic cardiomyopathy. Circulation. 2010;122(10):1004–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Contributed substantially to the conception or design of the work or the acquisition, analysis, or interpretation of data for the work or making figures: Alara Altintas, Sidar Copur, Furkan Yavuz, and Mehmet Kanbay Drafted the work or revised it critically for important intellectual content: Mehmet Kanbay, Laura G Sanchez-Lozada, Miguel A. Lanaspa, and Richard J. Johnson.

Corresponding author

Correspondence to Mehmet Kanbay.

Ethics declarations

All figures are drawn by the authors. No need to have any permission from other sources.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

Richard J. Johnson and Miguel A. Lanaspa have equity with Colorado Research Partners LLC that is developing inhibitors of fructose metabolism. Dr Johnson also has stocks with XORTX Therapeutics and has received honoraria from Horizon Pharma. All other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors. Not applicable (as this is review article, no human or animal consent is needed).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanbay, M., Altıntas, A., Yavuz, F. et al. Responses to Hypoxia: How Fructose Metabolism and Hypoxia-Inducible Factor-1a Pathways Converge in Health and Disease. Curr Nutr Rep 12, 181–190 (2023). https://doi.org/10.1007/s13668-023-00452-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-023-00452-5

Keywords

Navigation