Skip to main content

Advertisement

Log in

Angiogenesis modulation by Plectranthus amboinicus leaf extract and its fractions on chorioallantoic membrane and tumor induced angiogenesis

  • Research Article
  • Published:
Oriental Pharmacy and Experimental Medicine Aims and scope Submit manuscript

Abstract

The objective of the present study was to evaluate the angiogenesis modulation by Plectranthus amboinicus leaf extract and its fractions on Chorioallantoic membrane and tumour induced angiogenesis. Powdered leaves of Plectranthus amboinicus were extracted with methanol using soxhlet apparatus. The dried extract was subjected to qualitative, quantitative analysis and assessed for its potential free radical scavenging activity. The effect of crude methanol extract on vascularisation was assessed in chick chorioallantoic membrane (CAM) model. The extract was then fractionated with petroleum ether, chloroform, ethyl acetate and n-butanol and the fractions were evaluated for angiogenesis inhibitory activity by CAM assay. The potent fraction and crude extract were evaluated for angiogenesis inhibitory activity in murine ascites tumour model of Erhlich ascites carcinoma. The fraction was subjected to Gas chromatography–mass spectrometry (GC-MS) analysis. The crude methanol extract showed a significant inhibitory activity on vascularisation in CAM model. Among the fractions, n-butanol fraction showed a potent angiogenesis inhibition in CAM model. In peritoneal lining of Ehrlich ascites carcinoma (EAC) bearing mice, crude methanol extract and n-butanol fraction showed a significant decrease in number of blood vessels compared to EAC control mice. The preliminary qualitative and quantitative analysis showed the presence of flavonoids, tannins, phenolic compounds and showed a potent free radical scavenging activity. Gas chromatography–mass spectrometry analysis revealed the presence of (1) Phenol 2-methyl-6-(2-propenyl)-, (2) Phenol 2,6-dimethoxy, (3) 2-Methoxy-4-vinylphenol, (4) Phenol 4-methoxy-2,3,6-trimethyl (5) 3-Methyl-4-isopropylphenol in n-butanol fraction of Plectranthus amboinicus. These results demonstrate the anti-angiogenic activity of Plectranthus amboinicus leaves. The plant may serve as potential source for protection and treatment of cancer and could bring hope to millions of sufferers with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baskar R, Varalaksmi P, Amsaveni (1992) Changes in tissue enzymes produced by Coleus aromaticus experimental urolithiasis. Indian Drugs 29(6):254–258

    Google Scholar 

  • Bhattacharya S, Haldar PK (2011) Trichosanthes dioica root extract induces tumor proliferation and attenuation of antioxidant system in albino mice bearing Ehrlich ascites carcinoma. Interdiscip Toxicol 4(4):184–190

    Article  PubMed Central  PubMed  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  • Brandao EM, Brandao PHDM, Souza IA, Paiva GS, Carvalho MC, Lacerda CM (2013) Antineoplasic effect of aqueous extract of Plectranthus amboinicus in Ehrlich ascites carcinoma. J Cancer 4(7):573–576

    Article  PubMed Central  PubMed  Google Scholar 

  • Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, Michael S, O’Reilly MS, Folkman (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60(7):1878–1886

    CAS  PubMed  Google Scholar 

  • Buznego MT, Perez-Saad H (1999) Antiepileptic effect of Plectranthus amboinicus (Lour.) Spreng. Rev Neurol 29(4):388–389

    CAS  PubMed  Google Scholar 

  • Cao Y (2008) Molecular mechanisms and therapeutic development of angiogenesis inhibitors. Adv Cancer Res 100:113–131

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Yang M, Wen H, Chen J (2002) Estimation of total flavonoids content in propolis by two complementary colorimetric methods. J Food Drug Anal 10(3):178–182

    CAS  Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1999) Glossary of Indian medicinal plants. C.S.I.R Publications, New Delhi, p 74

    Google Scholar 

  • Ehrlich P, Apolant H (1905) Beobachtungen Uber Maligne Mausentumoren. Berlin Klin Wschr 42:871–874

    Google Scholar 

  • Fenninger LD, Mider GB (1954) In: Grenstein JP, Haddow A (eds) Advances in cancer research, vol 2. Academic, New York, p 244

    Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1):4–6

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18

    Article  CAS  PubMed  Google Scholar 

  • Gangai Abirami SK, Nirmala P (2014) A comparative – in-vitro study of anticancer effect of Mentha piperita, Ocimum basilicum and Coleus aromaticus against human laryngeal epidermoid carcinoma (HEP-2) cell lines. J Med Plants Stud 2(1):6–9

    Google Scholar 

  • Goodwin AM (2007) In vitro assays of angiogenesis for assessment of angiogenic and anti- angiogenic agents. Microvasc Res 74:172–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and (15 N) nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Gurgel AP, da Silva JG, Grangeiro AR, Oliveira DC, Lima CM, da Silva AC, Oliveira RA, Souza IA (2009) In vivo study of the anti-inflammatory and antitumor activities of leaves from Plectranthus amboinicus (Lour.) Spreng (Lamiaceae). J Ethnopharmacol 125(2):361–363

    Article  PubMed  Google Scholar 

  • Hasibuan PAZ, Rosidah IS, Nasution MP (2013) Antioxidant and cytotoxic activities of Plectranthus amboinicus (Lour.) Spreng extracts. Int J Pharma Teach Pract 4(3):755–758

    Google Scholar 

  • Hazel SJ (2003) A novel early chorioallantoic membrane assay demonstrates quantitative and qualitative changes caused by antiangiogenic substances. J Lab Clin Med 141(3):217–228

    Article  CAS  PubMed  Google Scholar 

  • Hoagland HC (1982) Hematological complications of cancer chemotherapy. Semin Oncol 9(1):95–102

    CAS  PubMed  Google Scholar 

  • Homayouni M (2009) Vascular endothelial growth factors and their inhibitors in ocular neovascular disorders. J Ophthalmic Vis Res 4(2):105–114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kerbel RS (2008) Tumor angiogenesis. N Eng J Med 358:2039–2049

    Article  CAS  Google Scholar 

  • Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2(10):727–739

    Article  CAS  PubMed  Google Scholar 

  • Kokate CK (1994) Practical pharmacognosy, 4th edn. Vallabah Prakashan, New Delhi, pp 107–111

    Google Scholar 

  • Koneri R, Nagarathna PKM, Mubasheera MG, Mohan MM (2014) Antiangiogenic and anticancer activity of saponins of Momordica cymbalaria. Int J Basic Clin Pharmacol 3(1):70–78

    Article  Google Scholar 

  • Latha PG, Panikkar KR (1998) Cytotoxic and antitumor principles from Ixora coccinea flowers. Cancer Lett 130(1-2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4(8):118–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loewenthal H, Jahn G (1932) Ubertragung-Suersuche Mit Carcinomatoser Mause Asciteslussigleit Und İhr Verhalten Gegen Physikalische Und Chemische Einwirkungen Z Krebsforsch 37:439–447

    Google Scholar 

  • Lu KV, Bergers G (2013) Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. CNS Oncol 2(1):49–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1(6):441–445

    CAS  PubMed  Google Scholar 

  • Magaji MG, Yaro AH, Ahmed A, Yakubu MI, Anuka JA (2007) Sedative activities of fractions obtained from methanolic root bark extract of Securinega virosa in mice. Nig J Pharm Sci 6(2):28–33

    Google Scholar 

  • Manjamalai A, Berlin Grace VM (2013) The chemotherapeutic effect of essential oil of Plectranthus amboinicus (Lour) on lung metastasis developed by B16F-10 cell line in C57BL/6 mice. Cancer Invest 31(1):74–82

    Article  CAS  PubMed  Google Scholar 

  • Mathur R, Gupta SK, Singh N, Mathur S, Kochupillai V, Velpandian T (2006) Evaluation of the effect of Withania somnifera root extracts on cell cycle and angiogenesis. J Ethnopharmacol 105(3):336–341

    Article  PubMed  Google Scholar 

  • Nadkarni AK (2002) Indian materia medica, vol 1, 3rd edn. Popular Prakashan, Bombay, pp 371–372

    Google Scholar 

  • Nguyen M, Shing Y, Folkman J (1994) Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res 47(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • OECD (2000) Guidance document on acute oral toxicity 425. Environmental health and safety monograph series on testing assessment. NO. 24

  • Patel RD, Mahobia NK, Singh MP, Singh A, Sheikh N, Alam G, Singh SK (2010) Antioxidant potential of leaves of Plectranthus amboinicus (Lour) Spreng. Der Pharma Lett 2(4):240–245

    Google Scholar 

  • Perumal G, Subramanyam C, Natrajan D, Srinivasan K, Mohanasundari C, Prabakar K (2004) Antifungal activities of traditional medicinal plant extracts: a preliminary survey. J Phytol Res 17:81–83

    Google Scholar 

  • Pinmai K, Chunlaratthanabhorn S, Ngamkitidechakul C, Soonthornchareon N, Hahnvajanawong C (2008) Synergistic growth inhibitory effects of Phyllanthus emblica and Terminalia bellerica extracts with conventional cytotoxic agents: Doxorubicin and Cisplatin against human hepatocellular carcinoma and lung cancer cells. World J Gastroentrol 14(10):1491–1497

    Article  CAS  Google Scholar 

  • Polshettiwar SA, Ganjiwale RO, Wadher SJ, Yeole PG (2007) Spectrophotometric estimation of total tannins in some ayurvedic eye drops. Indian J Pharm Sci 69(4):574–576

    Article  CAS  Google Scholar 

  • Prasad SB, Giri A (1994) Antitumor effect of Cisplatin against murine ascites Dalton’s lymphoma. Indian J Exp Biol 32(3):155–162

    CAS  PubMed  Google Scholar 

  • Price VE, Greenfield RE (1958) Anemia in cancer. In: Greenstein JP, Haddow A (eds) Advances in cancer research. Academic, New York, pp 199–200

    Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269(2):337–341

    Article  CAS  PubMed  Google Scholar 

  • Prudent D, Perineau F, Bessiere JM, Michel GM, Baccou JC (1995) Analysis of the essential oil of wild oregano from Martinique (Coleus aromaticus Benth.), evaluation of its bacteriostatic and fungistatic properties. J Esst Oil Res 7(2):165–173

    Article  CAS  Google Scholar 

  • Rama Devi M, Siva Subramanian N, Gupta VRM, Giri Prasad BS, Maheswar Reddy CH (2010) Anti gastric ulcer activity of Plectranthus amboinicus (Lour) in wistar albino rats. J Chem Pharm Res 2(3):374–380

    Google Scholar 

  • Rosenthaler K (1930) Chemical investigations of plants. G Bell and sons, London

    Google Scholar 

  • Sassa Y, Hata Y (2010) Antiangiogenic drugs in the management of ocular diseases: focus on antivascular endothelial growth factor. Clin Ophthalmol 4:275–283

    PubMed Central  PubMed  Google Scholar 

  • Satish Rao BS, Shanbhoge R, Upadhya D, Jagetia GC, Adiga SK, Kumar P, Guruprasad K, Gayathri P (2006) Antioxidant, anticlastogenic and radioprotective effect of Coleus aromaticus on Chinese hamster fibroblast cells (V79) exposed to gamma radiation. Mutagenesis 21(4):237–242

    Article  CAS  Google Scholar 

  • Scappaticci FA (2002) Mechanisms and future directions for angiogenesis based cancer therapies. J Clin Oncol 20(18):3906–3927

    Article  CAS  PubMed  Google Scholar 

  • Shenoy S, Kumar H, Thashma NV, Prabhu K, Pai P, Warrier I, Somayaji MV, Bairy KL, Kishore A (2012) Hepatoprotective activity of Plectranthus amboinicus against paracetamol induced hepatotoxicity in rats. Int J Pharmacol Clin Sci 1(2):32–38

    Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–158

    CAS  Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analysis: Automation and comparison with manual methods. Am J Enol Vitic 28(1):49–55

    CAS  Google Scholar 

  • Soni H, Singhai AK (2012) Recent updates on the genus Coleus: a review. Asian J Pharm Clin Res 5(1):12–17

    Google Scholar 

  • Sur TK, Pandit S, Biswas TK, Ghosh RB, Bhattacharyya D (2003) Diuretic activity of Coleus aromaticus benth on rats. Anc Sci Life 22(4):146–151

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teo KC, Ho SL (2013) Monoamine oxidase-B (MAO-B) inhibitors: implications for disease-modification in Parkinson’s disease. Transl Neurodegener 2(1):19

    Article  PubMed Central  PubMed  Google Scholar 

  • Toi M, Matsumoto T, Bando H (2001) Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol 2(11):667–673

    Article  CAS  PubMed  Google Scholar 

  • Tufan AC, Satiroglu-Tufan NL (2005) The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti angiogenic agents. Curr Cancer Drug Targets 5(4):249–266

    Article  CAS  PubMed  Google Scholar 

  • Warier PK, Nambier VP (1996) Indian medicinal plants: a compendium of 500 species. Orient Longman Ltd, Chennai, p 315

    Google Scholar 

  • Wu HC, Huang CT, Chang DK (2008) Anti-angiogenic therapeutic drugs for treatment of human Cancer. J Cancer Mol 4(2):37–45

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the management of JKK Nataraja College of Pharmacy, Komarapalayam, Tamil Nadu, INDIA for providing necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venugopalan Rajesh.

Ethics declarations

Ethical Statement

Ethical clearance (for handling of animals and the procedures used in study) was obtained from the Institutional Animal Ethical Committee (887/ac/05/CPCSEA Proposal number-41MP01DEC13) before performing the study on animals.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh, V., Gayathri, K. Angiogenesis modulation by Plectranthus amboinicus leaf extract and its fractions on chorioallantoic membrane and tumor induced angiogenesis. Orient Pharm Exp Med 15, 257–276 (2015). https://doi.org/10.1007/s13596-015-0198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-015-0198-2

Keywords

Navigation