Skip to main content
Log in

Genetic characterization of Lithuanian honeybee lines based on ISSR polymorphism

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

This study presents the first results from the selection and evaluation of inter-simple sequence repeat markers for the genetic assessment of honeybee lines developed in Lithuania and introduced subspecies. Two Lithuania-bred lines of Apis mellifera carnica were compared to those introduced from Czech Republic and Slovenia and also to a subspecies introduced from the Caucasus (Apis mellifera caucasica) and local Buckfast hybrids. The genetic constitution was assayed with four simple sequence primers: (ATG)5GA, (TCC)5GT, (AGAC)4GC and (GACA)4GT. Trinucleotide motif primers used in the bee DNA assays produced five to 10 fragments and tetranucleotide ones, six to seven. Primer (TCC)5GT generated a distinct A. m. caucasica-specific 800-bp fragment, which was also present in 40 % of the Buckfast individuals. A dendrogram based on the UPGMS method generated four sub-clusters. One of the Lithuania-bred A. m. carnica lines clustered apart from the other A. m. carnica lines. In a rooted phylogenetic tree, the group containing A. m. caucasica and Buckfast hybrids appeared well differentiated from the A. m. carnica lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Archak, S., Meduri, E., Sravana Kumar, P., Nagaraju, J. (2007) InSatDb: a microsatellite database of fully sequenced insect genomes. Nucleic Acids Res. 35(Database issue), D36–D39

    Article  PubMed  CAS  Google Scholar 

  • Awasthi, A.K., Nagaraja, G.M., Naik, G.V., Kanginakudru, S., Thangavelu, K., Nagaraju, J. (2004) Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet. 5, e1

    Article  Google Scholar 

  • Balzekas, J.A. (1995) The preservation of native bees in Lithuania. Zemdirbyste 42, 9–20

    Google Scholar 

  • Berezovskaja, P.P., Moroz, O.Iu., Sidorenko, A.P. (2002) Intra- and interspecies differences in the ISSR PCR patterns of bumble bee (Hymenoptera: Bombinae). Tsitol. Genet. 36, 28–35

    Google Scholar 

  • Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J., Kunin, W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354

    Article  PubMed  CAS  Google Scholar 

  • Bodur, C., Kence, M., Kence, A. (2007) Genetic structure of honeybee, Apis mellifera L. (Hymenoptera: Apidae) populations of Turkey inferred from microsatellite analysis. J. Apic. Res. 46, 50–56

    CAS  Google Scholar 

  • Bornet, B., Muller, C., Paulus, F., Branchard, M. (2002) Highly informative nature of inter simple sequence repeat (ISSR) sequences amplified using tri- and tetra-nucleotide primers from DNA of cauliflower (Brassica olerace var. botyris L.). Genome 45, 890–896

    Article  PubMed  CAS  Google Scholar 

  • Büchler, R., Berg, S., Conte, Y. (2010) Breeding for resistance to Varroa destructor in Europe. Apidologie 41, 393–408

    Article  Google Scholar 

  • Crozier, R.H., Crozier, Y.C. (1993) The mitochondrial genome of the honey bee Apis mellifera, complete sequence and genome organization. Genetics 133, 97–117

    PubMed  CAS  Google Scholar 

  • De la Rúa, P., Jaffé, R., Dall'Olio, R., Muñnoz, I., Serrano, J. (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40, 263–284

    Article  Google Scholar 

  • Doyle, J.J., Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–15

    Google Scholar 

  • Dušinsky, R., Kudela, M., Stloukalova, V., Jedlička, L. (2006) Use of inter-simple sequence repeat (ISSR) markers for discrimination between and within species of blackflies (Diptera: Simuliidae). Biologia 61, 299–304

    Article  Google Scholar 

  • Ellstrand, N.C., Elam, D.R. (1993) Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Syst. 24, 217–242

    Article  Google Scholar 

  • Estoup, A., Solignac, M., Harry, M., Cornuet, J.M. (1993) Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris. Nucleic Acids Res. 21(6), 1427–1431

    Article  PubMed  CAS  Google Scholar 

  • Estoup, A., Garnery, L., Solignac, M., Cornuet, J.M. (1995) Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140, 679–695

    PubMed  CAS  Google Scholar 

  • Frankham, R. (2005) Genetics and extinction. Biol. Conserv. 126, 131–140

    Article  Google Scholar 

  • Garnery, L., Cornuet, J.-M., Solignac, M. (1992) Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol. Ecol. 1, 145–154

    Article  PubMed  CAS  Google Scholar 

  • Garnery, L., Mosshine, E.H., Oldroyd, B.P., Cornuet, J.M. (1995) Mitochondrial DNA variation in Moroccan and Spanish honey bee populations. Mol. Ecol. 4(4), 465–472

    Article  CAS  Google Scholar 

  • Genersch, E., Ohe, W., Kaatz, H., Schroeder, A., Otten, Ch, Büchler, R., Berg, S., Ritter, W., Mühlen, W., Gisder, S., Meixner, M., Liebig, G., Rosenkranz, P. (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332–352

    Article  CAS  Google Scholar 

  • Gupta, M., Chyi, Y.-S., Romero-Severson, J., Owen, J.L. (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89(7–8), 998–1006

    CAS  Google Scholar 

  • Haig, S.M. (1998) Molecular contributions to conservation. Ecology 79, 413–425

    Article  Google Scholar 

  • Hall, H.G., Muralidharan, K. (1989) Evidence from mitochondrial DNA that African honey bees spread as continuous maternal lineages. Nature 339, 211–213

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., Crow, J.F. (1964) The number of alleles that can be maintained in a finite population. Genetics 49, 725–738

    PubMed  CAS  Google Scholar 

  • Korbin, M., Kuras, A., Zurawicz, E. (2002) Fruit plant germplasm characterisation using molecular markers generated in RAPD and ISSR–PCR. Cell. Mol. Biol. Lett. 7, 785–794

    PubMed  CAS  Google Scholar 

  • Lewontin, R.C. (1972) The apportionment of human diversity. Evol. Biol. 6, 381–398

    Article  Google Scholar 

  • Martins-Lopes, P., Lima-Brito, J., Gomes, S., Meirinhos, J., Santos, L., Guedes-Pinto, H. (2007) RAPD and ISSR molecular markers in Olea europea L.: genetic variability and molecular cultivar identification genetic. Genet. Resour. Crop Evol. 54, 117–128

    Article  CAS  Google Scholar 

  • McDermott, J.M., McDonald, B.A. (1993) Gene flaw in plant pathosystems. Annu. Rev. Phytopathol. 31, 353–373

    Article  Google Scholar 

  • Meixner, M.D., Sheppard, W.S., Poklukar, J. (1993) Asymetrical distribution of mitochondrial DNA polymorphism between 2 introgressing honey bee subspecies. Apidologie 24, 147–153

    Article  Google Scholar 

  • Meixner, M.D., Worobik, M., Wilde, J., Fuchs, S., Koeniger, N. (2007) Apis mellifera mellifera in eastern Europe-morphometric variation and determination of its range limits. Apidologie 38, 191–197

    Article  Google Scholar 

  • Meixner, M.D., Costa, C., Kryger, P., Hatjina, F., Bouga, M., Ivanova, E., Büchler, R. (2010) Conserving diversity and vitality for honey bee breeding. J. Apic. Res. 49, 85–92

    Article  Google Scholar 

  • Moritz, R.F., Kraus, F.B., Kryger, P., Crewe, R.M. (2007) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees. J. Insect Conserv. 1, 391–397

    Article  Google Scholar 

  • Nei, M. (1973) Analysis of gene diversity in subdivided population. Proc. Natl. Acad. Sci. U.S.A. 70, 3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei, M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590

    PubMed  CAS  Google Scholar 

  • Nei, M. (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei, M., Li, W.H. (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76, 5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nikonorov, Yu.M., Ben'kovskaya, G.V., Poskryakov, A.V., Nikolenko, A.G., Vakhitov, V.A. (1998) The use of the PCR technique for control of the pure-breeding of honeybee (Apis mellifera mellifera L.) colonies from the southern Urals. Genetika 34, 1574–1577

    PubMed  Google Scholar 

  • Oldroyd, B.P., Smolenski, A.J., Cornuet, J.-M., Crozier, R.H. (1994) Anarchy in the beehive. Nature 371, 749

    Article  CAS  Google Scholar 

  • Paini, D.R. (2004) Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review. Austral Ecol. 29, 399–407

    Article  Google Scholar 

  • Palmer, M.R., Smith, D.R., Kaftanoglu, O. (2000) Turkish honey bees: genetic variation and evidence for a fourth lineage of Apis mellifera mtDNA. J. Hered. 91, 42–46

    Article  PubMed  CAS  Google Scholar 

  • Paplauskiene, V., Dabkeviciene, G., Pasakinskiene, I. (2007) Molecular characterization of interspecific clover hybrids using ISSR markers. Zemdirbyste 94, 111–119

    Google Scholar 

  • Pivoriene, O., Pasakinskiene, I. (2008) Genetic diversity assessment in perennial ryegrass and Festulolium by ISSR fingerprinting. Zemdirbyste 95, 125–133

    Google Scholar 

  • Ruttner, F. (1988) Biogeography and Taxonomy of Honeybees. Springer, Berlin Heidelberg

    Google Scholar 

  • Ruttner, F., Tassencourt, L., Louveaux, J. (1978) Biometrical-statistical analysis of the geographic variability of Apis mellifera L. Apidologie 9, 363–381

    Article  Google Scholar 

  • Shaibi, T., Lattorff, H.M.G., Moritz, R.F.A. (2008) A microsatellite DNA toolkit for studying population structure in Apis mellifera. Mol. Ecol. Resour. 8, 1034–1036

    Article  PubMed  CAS  Google Scholar 

  • Sheppard, W.S., Smith, D.R. (2000) Identification of African-derived bees in the Americas: a survey of methods. Ann. Entomol. Soc. Am. 93(2), 159–176

    Article  CAS  Google Scholar 

  • Smith, D.R. (1988) Mitochondrial DNA polymorphism in five Old World subspecies of honey bees and in New World hybrids. In: Needham, G.R., Page Jr., R.E., Delfinado-Baker, M., Bowman, C.E. (eds.) Africanized honey bees and bee mites, pp. 303–312. Ellis Horwood, Chichester

    Google Scholar 

  • Soland-Reckeweg, G., Heckel, G., Neumann, P., Fluri, P., Excoffier, L. (2008) Gene flow in admixed populations and implications for the conservation of the Western honeybee, Apis mellifera. J. Insect Conserv. 13(3), 317–328

    Article  Google Scholar 

  • Solignac, M., Vautrin, D., Loiseau, A., Mougel, F., Baudry, E., Estoup, A., Garnery, L., Haberl, M., Cornuet, J.-M. (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Mol. Ecol. Notes 3, 307–311

    Article  CAS  Google Scholar 

  • Solignac, M., Vautrin, D., Baudry, E., Mougel, F., Loiseau, A., Cornuet, J.-M. (2004) A microsatellite-based linkage map of the honeybee, Apis mellifera L. Genetics 167, 253–262

    Article  PubMed  CAS  Google Scholar 

  • Sušnik, S., Kozmus, P., Poklukar, J., Meglic, V. (2004) Molecular characterisation of indigenous Apis mellifera carnica in Slovenia. Apidologie 35, 623–636

    Article  Google Scholar 

  • Sylvester, H. (2003) Inter-simple sequence repeat-restriction fragment length polymorphism for DNA fingerprinting. Biotechniques 34(5), 942–944

    PubMed  CAS  Google Scholar 

  • Tarpy, D.R., Seeley, T.D. (2006) Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften 93, 195–199

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer, Y., Wachter, D. (1997) Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput. Appl. Biosci. 13, 227–230

    PubMed  Google Scholar 

  • Zietkiewicz, E., Rafalski, A., Labuda, D. (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge the support of the Lithuanian Ministry of Agriculture provided to this study, as well as those who assisted in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Ceksteryte.

Additional information

Manuscript editor: Klaus Hartfelder

Caractérisation génétique des lignées d'abeilles de Lithuanie basée sur le polymorphisme ISSR

Lignées d'abeilles / distance génétique / empreinte génétique

Genetische Charakterisierung von Bienenlinien in Litauen basierend auf IRRS Polymorphismus

Schlüsselwörter: Honigbienen-Linien / DNA Fingerabdrücke / Genetische Distanzen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceksteryte, V., Paplauskiene, V., Tamasauskiene, D. et al. Genetic characterization of Lithuanian honeybee lines based on ISSR polymorphism. Apidologie 43, 652–662 (2012). https://doi.org/10.1007/s13592-012-0140-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-012-0140-2

Keywords

Navigation