Skip to main content
Log in

The miR156x + p/SPL13-6 module responds to ABA, IAA, and ethylene, and SPL13-6 participates in the juvenile–adult phase transition in Pyrus

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Perennial woody fruit trees usually have a long juvenile period, which greatly restricts the breeding process. The miR156/squamosa promoter binding protein-like (SPL) module and hormones participate in phase transition. To determine which miR156s and SPLs play roles in the juvenile–adult phase transition in pear (Pyrus) trees, and whether hormones affect the expressions of miR156 and target SPLs, we constructed and sequenced juvenile and adult sRNA libraries and then analyzed the expression patterns of differentially expressed miRNAs/targets pairs in the process of ontogenic development as well as under abscisic acid (ABA), indole-3-acetic acid (IAA) and ethylene precursor 1-aminocylopropane-1-carboxylic acid (ACC) treatments. SPL13-6 was identified as a candidate gene, and the function of its product was verified in transgenic Arabidopsis. Compared with in the juvenile phase, 65/62 miRNAs were up-/down-regulated in the adult phase, including two miR156 members, miR156x and miR156p. According to the mRNA database for the juvenile–adult phase transition, 11 pairs of miRNAs/targets participate in the juvenile–adult phase transition, including four pairs of miR156/SPLs. With ontogenic development, the expression level of miR156x + p decreased and those of four SPLs increased. ABA and IAA inhibited the expression of miR156, while low and high concentrations of ACC increased and decreased miR156 expression, respectively, compared with control levels. Among the four SPLs, SPL13-6 displayed an opposite expression patterns compared with that of miR156 under hormone treatments. Overexpression of SPL13-6 in Arabidopsis resulted in earlier abaxial trichome production and flowering phenotypes compared with the wild-type phenotype. These results suggest that the miR156x + p/SPL13-6 module responds to ABA, IAA, and ethylene and that SPL13-6 participates in the juvenile–adult phase transition. This research lays a foundation for further studies on regulation mechanisms involved in the juvenile–adult phase change in pear trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Amo-Marco JB, Vidal N, Vieitez AM, Ballester A (1993) Polypeptide markers differentiating juvenile and adult tissues in chestnut. J Plant Physiol 142:117–119

    Article  CAS  Google Scholar 

  • Barrero JM, Piqueras P, González-Guzmán M, Serrano R, Rodríguez PL, Ponce MR, Mico JL (2005) A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot 56(418):2071–2083

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1997) Multiple hypotheses testing with weights. Scand J Stat 24(3):407–418

    Article  Google Scholar 

  • Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10(5):791–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardon GH, Höhmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12:367–377. https://doi.org/10.1046/j.1365-313X.1997.12020367.x

    Article  CAS  PubMed  Google Scholar 

  • Clough S, Bent A (1998) Floral dip: a simplified method for transformation of Arabidopsis. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Conti L (2017) Hormonal control of the floral transition: can one catch them all? Dev Biol 430:288–301

    Article  CAS  PubMed  Google Scholar 

  • D’aloia M, Bonhomme D, Bouche F, Tamseddak K, Ormenese S, Torti S, Coupland G, Pe’rilleux C (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65:972–979

    Article  PubMed  Google Scholar 

  • Davis SJ (2009) Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ 32:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Shimada T, Nakata Y, Fujii H, Matsumoto H, Nakajima N, Ikoma Y, Omura M (2017) Abscisic acid affects expression of citrus FT homologs upon floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). Tree Physiol 38(5):755–771

    Article  Google Scholar 

  • Fornara F, Coupland G (2009) Plant phase transitions make a SPLash. Cell 138:625–627

    Article  CAS  PubMed  Google Scholar 

  • Guo CK, Xu YM, Shi M, Lai YM, Wu X, Wang HS, Zhu ZJ, Poethig RS, Wu G (2017) Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis. Plant Cell 29:1293–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, Jiang Y, Shi M, Wu X, Wu G (2021) ABI5 acts downstream of miR159 to delay vegetative phase change in Arabidopsis. New Phytol 231:339–350. https://doi.org/10.1111/nph.17371

    Article  CAS  PubMed  Google Scholar 

  • Hackett WP (1985) Juvenility, maturation, and rejuvenation in woody plants. Hortic Rev 7:109–155

    Google Scholar 

  • Hibara K, Isono M, Mimura M, Sentoku N, Kojima M, Sakakibara H, Kitomi Y, Yoshikawa T, Itoh J, Nagato Y (2016) Jasmonate regulates juvenile-to-adult phase transition in rice. Development 143:3407–3416

    CAS  PubMed  Google Scholar 

  • Hillman JR, Young I, Knights BA (1974) Abscisic acid in leaves of Hedera helix L. Planta 119:263–266

    Article  CAS  PubMed  Google Scholar 

  • Hou H, Yan X, Sha T, Yan Q, Wang X (2017) The SBP-Box gene VpSBP11 from Chinese wild Vitis is involved in floral transition and affects leaf development. Int J Mol Sci 18(7):1493–1505

    Article  PubMed  PubMed Central  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138(19):4117–4129

    Article  CAS  PubMed  Google Scholar 

  • James SA, Bell DT (2001) Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp globulus (Myrtaceae). Aust J Bot 49(2):259–269

    Article  Google Scholar 

  • Jay-Allemand C, Cornu D, Macheix JJ (1988) Biochemical attributes associated with rejuvenation of walnut tree. Plant Physiol Biochem 26:139–144

    CAS  Google Scholar 

  • Jia XL, Chen YK, Xu XZ, Shen F, Zheng QB, Du Z, Wang Y, Wu T, Xu XF, Han ZH, Zhang XZ (2017) miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings. Scientific Reports 7(1): 14223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Chen P, Zhang X, Liu Q, Li H (2021) Comparative analysis of the spl gene family in five rosaceae species: Fragaria vesca, Malus domestica, Prunus persica, Rubus occidentalis, and Pyrus pyrifolia. Open Life Sci. https://doi.org/10.1515/biol-2021-0020

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin JB, Jin YH, Lee J, Miura K, Yoo CY, Kim WY, Oosten MV, Hyun Y, Somers DE, Lee I, Yun DJ, Bressan RA, Hasegawa PM (2008) The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J 53:530–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Lyons R (2016) The link between flowering time and stress tolerance. J Exp Bot 67:47–60

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawrence EH, Leichty AR, Doody EE, Ma C, Poethig RS (2021) Vegetative phase change in Populus tremula x alba. New Phytol 231:351–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Alías I, León L, Rosa R, Rapoport HF (2009) Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees 23(1):181–187

    Article  Google Scholar 

  • Muckadell MSD (1954) Juvenile stages in woody plants. Physiol Plant 7(4):782–796

    Article  Google Scholar 

  • Niu Q, Qian M, Liu G, Yang F, Teng Y (2013) A genome-wide identification and characterization of mircoRNAs and their targets in “suli” pear (Pyrus pyrifolia white pear group). Planta 238(6):1095–1112

    Article  CAS  PubMed  Google Scholar 

  • Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301:334–336

    Article  CAS  PubMed  Google Scholar 

  • Preston JC, Hileman LC (2013) Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci 4(80):80

    PubMed  PubMed Central  Google Scholar 

  • Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L (2016) ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot 67(22):6309–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogler CE, Hackett WP (1975) Phase change in Hedera helix: induction of the mature to juvenile phase change by gibberellin A3 [GA3]. Physiol Plant 34(2):141–147

    Article  CAS  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Shimada A, Yamane H, Kimura Y (2005) Interaction between aspterric acid and indole-3-acetic acid on reproductive growth in Arabidopsis thaliana. Zeitschrift Für Naturforschung C 60:7–8

    Article  Google Scholar 

  • Song M, Wang R, Zhou F, Wang R, Zhang S, Li D, Song J, Yang S, Yang Y (2020) SPLs-mediated flowering regulation and hormone biosynthesis and signaling accompany juvenile-adult phase transition in Pyrus. Sci Hortic 272:109584

    Article  CAS  Google Scholar 

  • Sotelo-Silveira M, Cucinotta M, Chauvin AL, Chávez Montes RA, Colombo L, Marsch-Martínez N, de Folter S (2013) Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development. Plant Physiol 162(2):779–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Zhao Q, Liu DD, You CX, and Hao YJ (2013) Ectopic expression of the apple Md-miRNA156h gene regulates flower and fruit development in Arabidopsis. Plant Cell Tiss Org 112(3):343–351

    Article  CAS  Google Scholar 

  • Wada KC, Takeno K (2010) Stress-induced flowering. Plant Signaling Behav 5(8):944–947

    Article  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS (2011) MiRNA control of vegetative phase change in trees. PLoS Genet 7(2):e1002012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolters H, Jürgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HJ, Ma YK, Chen T, Wang M, Wang XJ (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40(W1):22–28

    Article  CAS  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Zhang S (2013) The genome of pear (Rehd.). Genome Res 23:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang D, Liu Y, Wang L, Qiao X, Zhang S (2014) Identification of miRNAs involved in pear fruit development and quality. BMC Genomics 15:953. https://doi.org/10.1186/1471-2164-15-953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia R, Zhu H, An YQ, Beers E, Liu Z (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13:R47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing L, Zhang D, Li Y, Zhao C, Zhang S, Shen Y, An N, Han M (2014) Genome wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics 15:1125–1146

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu M, Hu T, Zhao J, Park M, Earley KW, Wu G, Yang L, Poethig RS (2016) Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet 12(8):e1006263

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Xu L, Hu X, Wu T, Wang Y, Xu X, Zhang X, Han Z (2017) High miR156 expression is required for auxin-induced adventitious root formation via MxSPL26 independent of PINs and ARFs in Malus xiaojinensis. Front Plant Sci 8:1059

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D (2009) The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17:268–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Xu ML, Koo YJ, He J, Poethig RS (2013) Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. Elife 2:e00260

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Chen X (2021) Secrets of the MIR172 family in plant development and flowering unveiled. PLoS Biol 19(2):e3001099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L, Shi M, Xu X, Shen F, Chen M, Han Z, Peng Z, Zhai Q, Chen J, Zhang Z, Yang R, Ye J, Guan Z, Yang H, Gui Y, Wang J, Cai Z, Zhang X (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS ONE 5:e15224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu F, Wang S, Xue J, Li D, Ren X, Xue Y, Zhang X (2018) Morphological and physiological changes, and the functional analysis of PdSPL9 in the juvenile-to-adult phase transition of Paeonia delavayi. Plant Cell Tissue Organ Cult 133:325–337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Doctoral Foundation of Shandong Province (ZR2019BC003), the Breeding Project of Shandong Province (2019LZGC008), and the China Agricultural Research System (CARS-29-07).

Author information

Authors and Affiliations

Authors

Contributions

MS, AL, and YY performed the experiments and wrote the article. LS, ZW, RW, and CZ helped with experiments. RW, JS, and DL modified the article.

Corresponding author

Correspondence to Yingjie Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Heakeun Yun.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 33 KB)

Supplementary file 2 (DOC 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Li, A., Sun, L. et al. The miR156x + p/SPL13-6 module responds to ABA, IAA, and ethylene, and SPL13-6 participates in the juvenile–adult phase transition in Pyrus. Hortic. Environ. Biotechnol. 64, 437–448 (2023). https://doi.org/10.1007/s13580-022-00482-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-022-00482-y

Keywords

Navigation