Skip to main content
Log in

Elucidation of headspace volatilome in Polianthes tuberosa flower for identifying non-invasive biomarkers

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

To date, no volatilome study has used the dynamic headspace method, based on adsorption–desorption principle, to investigate the chemical divergence of floral fragrance in Polianthes tuberosa L. (cv. Calcutta Single). This study proposes a suitable adsorbent/solvent combination to analyze emitted volatiles from this flower, allowing for a qualitative, and tentatively quantitative, floral volatilome using a holistic approach. Here, 13 different adsorbent/solvent combinations were used to determine the total emitted volatilome, from in situ and plucked flowers, using headspace and gas chromatography–mass spectrometry. Several adsorbent/solvent combinations were explored to optimize trapping the most diverse range of volatile organic compounds in a single attempt. A mixture of porous polymers (Porapak or Tenax) with graphite or charcoal were best when combined with dichloromethane as the eluting solvent. Among the two solvents, dichloromethane showed better desorption efficiency than hexane. For better elucidation of any specific chemical group, suitable adsorbent and solvent should be chosen properly or the quantity or quality of the volatilome captured would be compromised. Three distinct classes of volatile organic compounds were categorized: aromatics, terpenes, and fatty acid derivatives. Maximum diversity, along with quantity, was found with the aromatic group. Total chemical divergence of volatilome from in situ and freshly plucked flowers was similar. Benzyl salicylate, methyl 2-amino benzoate, germacrene D, farnesal, farnesyl acetate, and delta decalactone may be considered biomarkers for the origin of P. tuberosa floral scent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anonymous (1986) Carbotrap—an excellent adsorbent for sampling many airborne contaminants. Supelco GC Bull 846 C, Bellefonte, Pennsylvania, p 4

  • Barman M, Mitra A (2018) Temporal relationship between emitted and endogenous floral scent volatiles in summer- and winter-blooming Jasminum species. Physiol Plant. https://doi.org/10.1111/ppl.12849

    Article  PubMed  Google Scholar 

  • Bera P, Mukherjee C, Mitra A (2017) Enzymatic production and emission of floral scent volatiles in Jasminum sambac. Plant Sci 256:25–38

    Article  CAS  PubMed  Google Scholar 

  • Bera P, Chakrabarti S, Gaikwad NK, Kutty NN, Barman M, Mitra A (2018) Developmental variation in floral volatiles composition of a fragrant orchid Zygopetalum maculatum (Kunth) Garay. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1451999

    Article  PubMed  Google Scholar 

  • Bestmann HJ, Winkler L, von Helversen O (1997) Headspace analysis of volatile flower scent constituents of bat-pollinated plants. Phytochemistry 46:1169–1172

    Article  CAS  PubMed  Google Scholar 

  • Bosse R, Wirth M, Becker T, Weiss J, Gibis M (2017) Determination of volatile marker compounds in raw ham using headspace-trap gas chromatography. Food Chem 219:249–259

    Article  CAS  Google Scholar 

  • Clément M, Arzel S, Le Bot B, Seux R, Millet M (2000) Adsorption/thermal desorption-GC/MS for the analysis of pesticides in the atmosphere. Chemosphere 40:49–56

    Article  PubMed  Google Scholar 

  • Davies NW (1990) Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and carbowax 20 M phases. J Chromatogr A 503:1–24

    Article  CAS  Google Scholar 

  • Dobson HE, Arroyo J, Bergström G, Groth I (1997) Interspecific variation in floral fragrances within the genus Narcissus (Amaryllidaceae). Biochem Syst Ecol 25:685–706

    Article  CAS  Google Scholar 

  • Dudareva N, Pichersky E (2006) Biology of floral scent. CRC Press, Boca Raton

    Book  Google Scholar 

  • Effmert U, Dinse C, Piechulla B (2008) Influence of green leaf herbivory by Manduca sexta on floral volatile emission by Nicotiana suaveolens. Plant Physiol 146:1996–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hills HG, Schutzman B (1990) Considerations for sampling floral fragrances. Phytochem Bull 22:2–9

    Google Scholar 

  • Joulain D, König WA (1998) The atlas of spectral data of sesquiterpene hydrocarbons. EBVerlag, Hamburg

    Google Scholar 

  • Knudsen JT, Gershenzon J (2006) The chemical diversity of floral scent. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 27–52

    Chapter  Google Scholar 

  • Koutsos TV, Chatzopoulou PS, Katsiotis ST (2009) Effects of individual selection on agronomical and morphological traits and essential oil of a “Greek basil” population. Euphytica 170:365–370

    Article  CAS  Google Scholar 

  • Maiti S, Mitra A (2017) Morphological, physiological and ultrastructural changes in flower explain the spatio-temporal emission of scent volatiles in Polianthes tuberosa L. Plant Cell Physiol 58:2095–2111

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Moon UR, Bera P, Samanta T, Mitra A (2014) The in vitro antioxidant capacities of Polianthes tuberosa L. flower extracts. Acta Physiol Plant 36:2597–2605

    Article  CAS  Google Scholar 

  • Malheiro R, de Pinho PG, Soares S, da Silva Ferreira AC, Baptista P (2013) Volatile biomarkers for wild mushrooms species discrimination. Food Res Int 54:186–194

    Article  CAS  Google Scholar 

  • Malosso E, English L, Hopkins DW, O’Donnell AG (2004) Use of 13C-labelled plant materials and ergosterol, PLFA and NLFA analyses to investigate organic matter decomposition in Antarctic soil. Soil Biol Biochem 36:165–175

    Article  CAS  Google Scholar 

  • Mitra S, Burger BV, Poddar-Sarkar M (2017) Comparison of headspace-oxylipin-volatilomes of some Eastern Himalayan mosses extracted by sample enrichment probe and analysed by gas chromatography-mass spectrometry. Protoplasma 254:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Miyake T, Yamaoka R, Yahara T (1998) Floral scents of hawkmoth-pollinated flowers in Japan. J Plant Res 111:199–205

    Article  CAS  Google Scholar 

  • Mookherjee BD, Trenkle RW, Wilson RA (1989) Live vs. dead. Part II. A comparative analysis of the headspace volatiles of some important fragrance and flavor raw materials. J Essent Oil Res 1:85–90

    Article  CAS  Google Scholar 

  • Patt JM, Rhoades DF, Corkill JA (1988) Analysis of the floral fragrance of Platanthera stricta. Phytochemistry 27:91–95

    Article  CAS  Google Scholar 

  • Raguso RA, Pellmyr O (1998) Dynamic headspace analysis of floral volatiles: a comparison of methods. Oikos 81:238–254

    Article  CAS  Google Scholar 

  • Rothweiler H, Wäger PA, Schlatter C (1991) Comparison of tenax TA and carbotrap for sampling and analysis of volatile organic compounds in air. Atmos Environ B-URB 25:231–235

    Article  Google Scholar 

  • Sarrou E, Ganopoulos I, Xanthopoulou A, Masuero D, Martens S, Madesis P, Mavromatis A, Chatzopoulou P (2017) Genetic diversity and metabolic profile of Salvia officinalis populations: implications for advanced breeding strategies. Planta. https://doi.org/10.1007/s00425-017-2666-z

    Article  PubMed  Google Scholar 

  • Sircar D, Dey G, Mitra A (2007) A validated HPLC method for simultaneous determination of 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-4-methoxybenzoic acid in root organs of Hemidesmus indicus. Chromatographia 65:349–353

    Article  CAS  Google Scholar 

  • Sunohara Y, Baba Y, Matsuyama S, Fujimura K, Matsumoto H (2015) Screening and identification of phytotoxic volatile compounds in medicinal plants and characterizations of a selected compound, eucarvone. Protoplasma 252:1047–1059

    Article  CAS  PubMed  Google Scholar 

  • Williams NH, Whitten WM (1983) Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol Bull 164:355–395

    Article  CAS  Google Scholar 

  • Withycombe DA, Mookherjee BD, Hruza A (1978) Isolation of trace volatile constituents of hydrolyzed vegetable protein via porous polymer entrainment. In: Charalam-bous G (ed) Analysis of foods and beverages: headspace techniques. Academic Press, New York, pp 81–94

    Chapter  Google Scholar 

  • Wolfender JL, Rudaz S, Hae Choi Y, Kyong Kim H (2013) Plant metabolomics: from holistic data to relevant biomarkers. Curr Med Chem 20:1056–1090

    CAS  Google Scholar 

  • Wyllie SG, Alves S, Filsoof M, Jennings WG (1978) Headspace sampling: use and abuse. Academic Press, New York

    Google Scholar 

  • Yi HS, Ryu CM, Heil M (2010) Sweet smells prepare plants for future stress: airborne induction of plant disease immunity. Plant Signal Behav 5:528–531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research Grant [307(Sanc)/ST/P/S&T/1G-56/2017 to A Mitra] from the Department of Higher Education, Science & Technology and Biotechnology, Government of West Bengal, India. S Maiti was a recipient of an individual doctoral fellowship [09/081(1189)/2012-EMR-I] from the Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adinpunya Mitra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, S., Mitra, A. Elucidation of headspace volatilome in Polianthes tuberosa flower for identifying non-invasive biomarkers. Hortic. Environ. Biotechnol. 60, 269–280 (2019). https://doi.org/10.1007/s13580-018-0116-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-018-0116-x

Keywords

Navigation