Skip to main content
Log in

Effects of high temperature on in vitro tuberization and accumulation of stress-responsive proteins in potato

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Potato (Solanum tuberosum L.) plants are highly vulnerable to heat stress. Even moderately elevated temperatures can disturb the process of tuberization in this important crop, causing a decline in tuber initiation, a reduction in tuber bulking, and tuber disorders. In the present study, we investigated the effects of heat stress on tuberization in two potato cultivars, the heat-sensitive cultivar Désirée and the heat-tolerant cultivar Festival, using an in vitro system. A temperature of 29 °C reduced tuber initiation and tuber bulking, and stimulated shoot elongation in cv. Désirée, while this temperature treatment did not significantly alter tuberization or shoot elongation in cv. Festival. In addition, high temperature interfered with the onset of microtuber dormancy and promoted growth of tuber apical buds during the tuber bulking stage in both cultivars. Stress-responsive proteins HSP17.6-CI, HSP101, and eEF1A showed heat-induced accumulation patterns in shoots and microtubers of these two cultivars, with the exception of a decline in the abundance of eEF1A in cv. Désirée microtubers under heat stress. High levels of HSP17.6-CI in microtubers of cv. Désirée did not ameliorate the effects of heat stress on tuberization of this relatively heat-sensitive cultivar. Conversely, a higher level of eEF1A under heat stress in microtubers of the heat-tolerant cv. Festival indicated a possible function of this protein in alleviating the negative effects of high temperature on potato tuberization. This study suggested that analysis of stress-responsive proteins in potato microtubers combined with assessment of tuberization parameters in vitro may represent a useful screening procedure for selection of heat-tolerant potato genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn YJ, Zimmerman JL (2006) Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant Cell Environ 29:95–104

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bukovnik U, Fu J, Bennett M, Prasad PVV, Ristić Z (2009) Heat tolerance and expression of protein synthesis elongation factors, EF-Tu and EF-1α, in spring wheat. Funct Plant Biol 36:234–241

    Article  CAS  Google Scholar 

  • Delaplace P, Fauconnier ML, Sergeant K, Dierick JF, Oufir M, van der Wal F, America AHP, Renaut J, Hausman JF, du Jardin P (2009) Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern. J Exp Bot 60:1273–1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doyle SM, Genest O, Wickner S (2013) Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 14:617–629

    Article  PubMed  CAS  Google Scholar 

  • Dragićević I, Konjević R, Vinterhalter B, Vinterhalter D, Nešković M (2008) The effects of IAA and tetcyclacis on tuberization in potato (Solanum tuberosum L.) shoot cultures in vitro. Plant Growth Regul 54:189–193

    Article  CAS  Google Scholar 

  • FAO (2015) Statistical pocketbook: World Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy. http://www.fao.org/3/a-i4691e.pdf. Accessed 07 Sept 2017

  • Friedrich KL, Giese KC, Buan NR, Vierling E (2004) Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J Biol Chem 279:1080–1089

    Article  PubMed  CAS  Google Scholar 

  • Gangadhar BH, Yu JW, Sajeesh K, Park SW (2014) A systematic exploration of high-temperature stress-responsive genes in potato using large-scale yeast functional screening. Mol Genet Genomics 289:185–201

    Article  PubMed  CAS  Google Scholar 

  • Garner N, Blake J (1989) The induction and development of potato microtubers in vitro on media free of growth regulating substances. Ann Bot 63:663–674

    Article  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  PubMed  CAS  Google Scholar 

  • Gopal J, Minocha JL (1998) Effectiveness of in vitro selection for agronomic characters in potato. Euphytica 103:67–74

    Article  Google Scholar 

  • Hancock RD, Morris WL, Ducreux LJM, Morris JA, Usman M, Verrall SR, Fuller J, Simpson CG, Zhang R, Hedley PE, Taylor MA (2014) Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ 37:439–450

    Article  PubMed  CAS  Google Scholar 

  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci 97:4392–4397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MA, Munive S, Bonierbale M (2015) Early generation in vitro assay to identify potato populations and clones tolerant to heat. Plant Cell Tiss Organ Cult 121:45–52

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    Article  PubMed  CAS  Google Scholar 

  • Lehesranta SJ, Koistinen KM, Massat N, Davies HV, Shepherd LVT, McNicol JW, Cakmak I, Cooper J, Lück L, Kärenlampi SO, Leifert C (2007) Effects of agricultural production systems and their components on protein profiles of potato tubers. Proteomics 7:597–604

    Article  PubMed  CAS  Google Scholar 

  • Levy D, Veilleux RE (2007) Adaptation of potato to high temperatures and salinity—a review. Am J Potato Res 84:487–506

    Article  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirement for tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Lubaretz O, zur Nieden U (2002) Accumulation of plant small heat-stress proteins in storage organs. Planta 215:220–228

    Article  PubMed  CAS  Google Scholar 

  • Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. Plant J 20:89–99

    Article  PubMed  CAS  Google Scholar 

  • Manrique LA (1992) Potato production in the tropics: crop requirements. J Plant Nutr 15:2679–2726

    Article  Google Scholar 

  • Momčilović I, Ristić Z (2007) Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J Plant Physiol 164:90–99

    Article  PubMed  CAS  Google Scholar 

  • Momčilović I, Pantelić D, Hfidan M, Savić J, Vinterhalter D (2014) Improved procedure for detection of superoxide dismutase isoforms in potato, Solanum tuberosum L. Acta Physiol Plant 36:2059–2066

    Article  CAS  Google Scholar 

  • Momčilović I, Pantelić D, Zdravković-Korać S, Oljača J, Rudić J, Fu J (2016) Heat-induced accumulation of protein synthesis elongation factor 1A implies an important role in heat tolerance in potato. Planta 244:671–679

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nakamoto H, Vígh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64:294–306

    Article  PubMed  CAS  Google Scholar 

  • Nowak J, Colborne D (1989) In vitro tuberization and tuber proteins as indicators of heat stress tolerance in potato. Am Potato J 66:35–45

    Article  Google Scholar 

  • Struik PC (2007) Responses of the potato plant to temperature. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, MacKerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology: advances and perspectives. Elsevier, Amsterdam, pp 367–393

    Chapter  Google Scholar 

  • Vettermann C, Jäck HM, Mielenz D (2002) A colloidal silver staining-destaining method for precise assignment of immunoreactive spots in two-dimensional protein patterns. Anal Biochem 308:381–387

    Article  PubMed  CAS  Google Scholar 

  • Vreugdenhil D, Boogaard Y, Visser RGF, de Bruijn SM (1998) Comparison of tuber and shoot formation from in vitro cultured potato explants. Plant Cell Tiss Organ Cult 53:197–204

    Article  CAS  Google Scholar 

  • Wang D, Luthe DS (2003) Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiol 133:319–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Wiltshire JJJ, Cobb AH (1996) A review of the physiology of potato tuber dormancy. Ann Appl Biol 129:553–569

    Article  Google Scholar 

  • Xu X, van Lammeren AAM, Vermeer E, Vreugdenhil D (1998a) The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Phys 117:575–584

    Article  CAS  Google Scholar 

  • Xu X, Vreugdenhil D, van Lammeren AAM (1998b) Cell division and cell enlargement during potato tuber formation. J Exp Bot 49:573–582

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Project Grant No. TR31049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Momčilović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantelić, D., Dragićević, I.Č., Rudić, J. et al. Effects of high temperature on in vitro tuberization and accumulation of stress-responsive proteins in potato. Hortic. Environ. Biotechnol. 59, 315–324 (2018). https://doi.org/10.1007/s13580-018-0043-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-018-0043-x

Keywords

Navigation