Skip to main content
Log in

Relevance of Dynamical Nuclear Processes in Quantum Complex Systems of Massive White Dwarfs

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We revisit the properties of relativistic and quantum complex systems of massive white dwarfs (WDs) using a modern equation of state (EoS) which accounts for electron-ion interactions among lattice nuclei, and which makes use of the latest experimental atomic mass data. We estimate the mass density thresholds for the onset of nuclear reactions in the cores of massive WDs and study the impact of microscopic stability on the structure and stability of different WD constitutions. We focus on the properties of massive carbon and oxygen white dwarfs, taking into account the electron capture and pycnonuclear fusion reactions instabilities. Our results indicate that pycnonuclear reactions turn carbon WDs unstable while for oxygen WDs their instability is due to the inverse β −decay (electron capture) process. We highlight that these dynamical nuclear processes are of great relevance for assessment of stability of these quantum complex systems of massive WDs, since they constrain their maximum masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.O. Kepler, A.D. Romero, I. Pelisoli, G. Ourique, . Int. J. Mod. Phys. Conf. 45, 1760023 (2017). https://doi.org/10/gfs2fb.00258

    Article  Google Scholar 

  2. R. Kippenhahn, A. Weigert, A. Weiss. Stellar Structure and Evolution (Springer Science & Business Media, New York, 2012), p. 02360

    Book  Google Scholar 

  3. M.A. Barstow, S. Jordan, D. O’Donoghue, M.R. Burleigh, R. Napiwotzki, M.K. Harrop-Allin, . MNRAS. 277, 971 (1995)

    Article  ADS  Google Scholar 

  4. B. Külebi, S. Jordan, E. Nelan, U. Bastian, M. Altmann, . Astron. Astrophys. 524, A36 (2010). https://doi.org/10.1051/0004-6361/201015237

    Article  ADS  Google Scholar 

  5. J. Liebert, G.D. Schmidt, R.F. Green, H.S. Stockman, J.T. McGraw, . ApJ. 264, 262 (1983). https://doi.org/10.1086/160593

    Article  ADS  Google Scholar 

  6. G.D. Schmidt, P. Bergeron, J. Liebert, R.A. Saffer, . ApJ. 394, 603 (1992). https://doi.org/10.1086/171613

    Article  ADS  Google Scholar 

  7. S. Mereghetti, A. Tiengo, P. Esposito, N. La Palombara, G.L. Israel, L. Stella, . Science. 325, 1222 (2009). https://doi.org/10.1126/science.1176252

    Article  ADS  Google Scholar 

  8. S. Mereghetti, F. Pintore, P. Esposito, N. La Palombara, A. Tiengo, G.L. Israel, L. Stella, . Mon. Notices Royal Astron. Soc. 458(4), 3523 (2016). https://doi.org/10.1093/mnras/stw536

    Article  ADS  Google Scholar 

  9. M.F. Sousa, J.G. Coelho, J.C.N. de Araujo, . Mon. Notices Royal Astron. Soc. 498(3), 4426 (2020). https://doi.org/10.1093/mnras/staa2683

    Article  ADS  Google Scholar 

  10. M. Malheiro, J.A. Rueda, R. Ruffini, . Publ. Astron. Soc. Japan. 64(3), 56 (2012). https://doi.org/10.1093/pasj/64.3.56

    Article  ADS  Google Scholar 

  11. J.G. Coelho, M. Malheiro, . Publ. Astron. Soc. Japan. 66(1), 14 (2014). https://doi.org/10.1093/pasj/pst014

    Article  ADS  Google Scholar 

  12. R.V. Lobato, M. Malheiro, J.G. Coelho, . Int. J. Modern Phys. D. 25(9), 1641025 (2016). https://doi.org/10.1142/S021827181641025X

    Article  ADS  Google Scholar 

  13. D.L. Cáceres, S.M. de Carvalho, J.G. Coelho, R.C.R. de Lima, J.A. Rueda, . Mon. Notices Royal Astron. Soc. 465(4), 4434–4440 (2016). https://doi.org/10.1093/mnras/stw3047

    Article  ADS  Google Scholar 

  14. S.V. Borges, C.V. Rodrigues, J.G. Coelho, M. Malheiro, M. Castro, . Astrophys. J. 895(1), 26 (2020). https://doi.org/10.3847/1538-4357/ab8add

    Article  ADS  Google Scholar 

  15. L.G. Althaus, E. García-Berro, J. Isern, A.H. Córsico, . Astron. Astrophys. 441(2), 689 (2005). https://doi.org/10.1051/0004-6361:20052996

    Article  ADS  Google Scholar 

  16. L.G. Althaus, E. García-Berro, J. Isern, A.H. Córsico, R.D. Rohrmann, . Astron. Astrophys. 465(1), 249 (2007). https://doi.org/10.1051/0004-6361:20066059

    Article  ADS  Google Scholar 

  17. B.G. Castanheira, S.O. Kepler, S.J. Kleinman, A. Nitta, L. Fraga, . MNRAS. 430 (1), 50 (2013). https://doi.org/10.1093/mnras/sts474

    Article  ADS  Google Scholar 

  18. J.J. Hermes, S.O. Kepler, B.G. Castanheira, A. Gianninas, D.E. Winget, M.H. Montgomery, W.R. Brown, . S.T. Harrold, apjl. 771(1), L2 (2013). https://doi.org/10.1088/2041-8205/771/1/L2

    Article  Google Scholar 

  19. B. Curd, A. Gianninas, K.J. Bell, M. Kilic, A.D. Romero, C. Allende Prieto, D.E. Winget, K.I. Winget, . MNRAS. 468(1), 239 (2017). https://doi.org/10.1093/mnras/stx320

    Article  ADS  Google Scholar 

  20. M.E. Camisassa, L.G. Althaus, A.H. Córsico, F.C. De Gerónimo, M.M. Miller Bertolami, M.L. Novarino, R.D. Rohrmann, F.C. Wachlin, E. García-Berro, . Astron. Astrophys. 625, A87 (2019). https://doi.org/10.1051/0004-6361/201833822

    Article  Google Scholar 

  21. N.P. Gentile Fusillo, P.E. Tremblay, B.T. Gänsicke, C.J. Manser, T. Cunningham, E. Cukanovaite, M. Hollands, T. Marsh, R. Raddi, S. Jordan, S. Toonen, S. Geier, M. Barstow, J.D. Cummings, . Mon. Notices Royal Astron. Soc. 482(4), 4570 (2018). https://doi.org/10.1093/mnras/sty3016

    Article  ADS  Google Scholar 

  22. F.M. Jiménez-Esteban, S. Torres, A. Rebassa-Mansergas, G. Skorobogatov, E. Solano, C. Cantero, C. Rodrigo, . MNRAS. 480(4), 4505 (2018). https://doi.org/10.1093/mnras/sty2120

    Article  ADS  Google Scholar 

  23. M.F. Sousa, J.G. Coelho, J.C.N. de Araujo, . Mon. Notices Royal Astron. Soc. 492(4), 5949–5955 (2020). https://doi.org/10.1093/mnras/staa205

    Article  ADS  Google Scholar 

  24. E. Otoniel, J.G. Coelho, M. Malheiro, F. Weber, arXiv:2010.12441 (2020)

  25. S. Subramanian, B Mukhopadhyay, . MNRAS. 454(1), 752 (2015). https://doi.org/10.1093/mnras/stv1983

    Article  ADS  Google Scholar 

  26. J.M. Silverman, M. Ganeshalingam, W. Li, A.V. Filippenko, A.A. Miller, D. Poznanski, . MNRAS. 410(1), 585 (2011). https://academic.oup.com/mnras/article/410/1/585/1036265

    Article  ADS  Google Scholar 

  27. R.A. Scalzo, et al., . ApJ. 713, 1073 (2010). https://doi.org/10.1088/0004-637X/713/2/1073/meta

    Article  ADS  Google Scholar 

  28. D.A. Howell, et al., . Natur. 443, 308 (2006). https://www.nature.com/articles/nature05103

    Article  ADS  Google Scholar 

  29. M. Hicken, P.M. Garnavich, J.L. Prieto, S. Blondin, D.L. DePoy, R.P. Kirshner, J. Parrent, . ApJ. 669, L17 (2007). https://doi.org/10.1086/523301/meta

    Article  ADS  Google Scholar 

  30. M. Yamanaka, et al., . ApJ. 707, L118 (2009). https://doi.org/10.1088/0004-637X/707/2/L118/meta

    Article  ADS  Google Scholar 

  31. S. Taubenberger, S. Benetti, M. Childress, R. Pakmor, S. Hachinger, P. Mazzali, V. Stanishev, N. Elias-Rosa, I. Agnoletto, F. Bufano, et al., . MNRAS. 412(4), 2735 (2011). https://doi.org/10.1111/j.1365-2966.2010.18107.x

    Article  ADS  Google Scholar 

  32. S.O. Kepler, S.J. Kleinman, A. Nitta, D. Koester, B.G. Castanheira, O. Giovannini, A.F.M. Costa, L. Althaus, . MNRAS. 375(4), 1315 (2007). https://doi.org/10.1111/j.1365-2966.2006.11388.x

    Article  ADS  Google Scholar 

  33. M. Ilkov, N. Soker, . MNRAS. 419(2), 1695 (2012). https://academic.oup.com/mnras/article/419/2/1695/989583

    Article  ADS  Google Scholar 

  34. R. Moll, C. Raskin, D. Kasen, S. Woosley, . ApJ. 785, 105 (2014). https://doi.org/10.1088/0004-637X/785/2/105/meta

    Article  ADS  Google Scholar 

  35. S. Ji, R.T. Fisher, E. García-Berro, P. Tzeferacos, G. Jordan, D. Lee, P. Lorén-Aguilar, P. Cremer, J. Behrends, . ApJ. 773(2), 136 (2013). https://doi.org/10.1088/0004-637X/773/2/136/meta

    Article  ADS  Google Scholar 

  36. D.R. van Rossum, R. Kashyap, R. Fisher, R.T. Wollaeger, E. García-Berro, G. Aznar-Siguán, S. Ji, P. Lorén-Aguilar, . ApJ. 827(2), 128 (2016). https://doi.org/10.3847/0004-637X/827/2/128/meta

    Article  ADS  Google Scholar 

  37. U. Das, B. Mukhopadhyay, . MPLA. 29(07), 1450035 (2014). https://doi.org/10.1142/S0217732314500357

    Article  ADS  Google Scholar 

  38. D. Adam, . Astron. Astrophys. 160, 95 (1986). http://adsabs.harvard.edu/full/1986A

    ADS  Google Scholar 

  39. J.P. Ostriker, F. Hartwick, . ApJ. 153, 797 (1968). https://doi.org/10.1086/149706

    Article  ADS  Google Scholar 

  40. U. Das, B. Mukhopadhyay, . PRD. 86(4), 042001 (2012). https://doi.org/10.1103/PhysRevD.86.042001

    Article  ADS  Google Scholar 

  41. J.G. Coelho, R.M. Marinho, M. Malheiro, R. Negreiros, D.L. Cáceres, J.A. Rueda, R. Ruffini, . ApJ. 794(1), 86 (2014). https://doi.org/10.1088/0004-637X/794/1/86/meta

    Article  ADS  Google Scholar 

  42. N. Chamel, A.F. Fantina, P.J. Davis, . PRD. 88(8), 081301(R) (2013). https://doi.org/10.1103/PhysRevD.88.081301

    Article  ADS  Google Scholar 

  43. V. Liccardo, M. Malheiro, M.S. Hussein, B.V. Carlson, T. Frederico, . Europ. Phys. J. A. 54(12), 221 (2018). https://doi.org/10.1140/epja/i2018-12648-5

    Article  ADS  Google Scholar 

  44. B. Franzon, S. Schramm, . PRD. 92(8), 083006 (2015). https://doi.org/10.1103/PhysRevD.92.083006

    Article  ADS  Google Scholar 

  45. S. Chandrasekhar. An Introduction to the Study of Stellar Structure (Univ Chicago Press, New York, 1939)

    MATH  Google Scholar 

  46. E. Otoniel, B. Franzon, G.A. Carvalho, M. Malheiro, S. Schramm, F. Weber, . Astrophys. J. 879(1), 46 (2019). https://doi.org/10.3847/1538-4357/ab24d1

    Article  ADS  Google Scholar 

  47. S. Chandrasekhar, R.F. Tooper, . ApJ. 139, 1396 (1964). https://doi.org/10.1086/147883

    Article  ADS  Google Scholar 

  48. P. Bera, D. Bhattacharya, . Mon. Notices Royal Astron. Soc. 456(3), 3375 (2016). https://doi.org/10.1093/mnras/stv2823

    Article  ADS  Google Scholar 

  49. G. Carvalho, R. Marinho, M. Malheiro, . Gen. Rel. Grav. 50(4), 38 (2018). https://doi.org/10.1007/s10714-018-2354-8

    Article  ADS  Google Scholar 

  50. N. Chamel, A.F. Fantina, . PRD. 92, 023008 (2015). https://doi.org/10.1103/PhysRevD.92.023008

    Article  ADS  Google Scholar 

  51. L.R. Gasques, A.V. Afanasjev, E.F. Aguilera, M. Beard, L.C. Chamon, P. Ring, M. Wiescher, D.G. Yakovlev, . PRC. 72(2), 025806 (2005). https://doi.org/10.1103/PhysRevC.72.025806

    Article  ADS  Google Scholar 

  52. K. Boshkayev, J.A. Rueda, R. Ruffini, I. Siutsou, . ApJ. 762(2), 117 (2013). https://doi.org/10.1088/0004-637X/762/2/117/meta

    Article  ADS  Google Scholar 

  53. N. Chamel, E. Molter, A. Fantina, D.P. Arteaga, . PRD. 90(4), 043002 (2014). https://doi.org/10.1103/PhysRevD.90.043002

    Article  ADS  Google Scholar 

  54. D.G. Yakovlev, L.R. Gasques, A.V. Afanasjev, M. Beard, M. Wiescher, . PRC. 74 (3), 035803 (2006). https://doi.org/10.1103/PhysRevC.74.035803

    Article  ADS  Google Scholar 

  55. E. Chiosi, C. Chiosi, P. Trevisan, L. Piovan, M. Orio, . Mon. Notices Royal Astron. Soc. 448(3), 2100 (2015). https://doi.org/10.1093/mnras/stv084

    Article  ADS  Google Scholar 

  56. E.E. Salpeter, . ApJ. 134, 669 (1961). http://adsabs.harvard.edu/full/1961ApJ...134..669S

    Article  ADS  MathSciNet  Google Scholar 

  57. T. Hamada, E.E. Salpeter, . ApJ. 134, 683 (1961). https://doi.org/10.1086/147195

    Article  ADS  Google Scholar 

  58. M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, . ChPhC. 36(12), 1603 (2012). https://doi.org/10.1088/1674-1137/36/12/003/meta

    Article  Google Scholar 

  59. G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, . ChPhC. 36(12), 1287 (2012). https://doi.org/10.1088/1674-1137/36/12/002/meta

    Article  Google Scholar 

  60. S.L. Shapiro, S.A. Teukolsky. Black Holes White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 2008)

    Google Scholar 

  61. J.M. Pearson, S. Goriely, N. Chamel, . PRC. 83(6), 065810 (2011). https://doi.org/10.1103/PhysRevC.83.065810

    Article  ADS  Google Scholar 

  62. G. Gamow, . PhRv. 55(8), 718 (1939). https://doi.org/10.1103/PhysRev.55.718

    ADS  Google Scholar 

  63. A.B. Balantekin, C.A. Bertulani, M.S. Hussein, . Nucl. Phys. A. 627, 324 (1997). https://doi.org/10.1016/S0375-9474(97)00589-7

    Article  ADS  Google Scholar 

  64. M. Ueda, A.J. Sargeant, M.P. Pato, M.S. Hussein, . Prog. Theor. Phys. Suppl. 146, 634 (2002). https://doi.org/10.1143/PTPS.146.634

    Article  ADS  Google Scholar 

  65. M.A. Cândido Ribeiro, L.C. Chamon, D. Pereira, M.S. Hussein, D. Galetti, . PRL. 78, 3270 (1997). https://doi.org/10.1103/PhysRevLett.78.3270

    Article  ADS  Google Scholar 

  66. L.C. Chamon, et al., . PRL. 79, 5218 (1997). https://doi.org/10.1103/PhysRevLett.79.5218

    Article  ADS  Google Scholar 

  67. M. Rotondo, J.A. Rueda, R. Ruffini, S.S. Xue, . Phys. Rev. D. 84, 084007 (2011). https://doi.org/10.1103/PhysRevD.84.084007

    Article  ADS  Google Scholar 

  68. J.R. Oppenheimer, G.M. Volkoff, . PhRv. 55(4), 374 (1939). https://doi.org/10.1103/PhysRev.55.374

    Article  ADS  Google Scholar 

  69. R.C. Tolman, . PhRv. 55(4), 364 (1939). https://doi.org/10.1103/PhysRev.55.364https://doi.org/10.1103/PhysRev.55.364

    ADS  Google Scholar 

  70. B. Golf, J. Hellmers, F. Weber, PRC 80(1), https://doi.org/10.1103/PhysRevC.80.015804https://doi.org/10.1103/PhysRevC.80.015804 (2009)

  71. U. Das, B. Mukhopadhyay, . PRL. 110(7), 071102 (2013). https://doi.org/10.1103/PhysRevLett.110.071102

    Article  ADS  Google Scholar 

  72. U. Das, B. Mukhopadhyay, A.R. Rao, . ApJ. 767 (1), L14 (2013). https://doi.org/10.1088/2041-8205/767/1/L14. http://stacks.iop.org/2041-8205/767/i=1/a=L14?key=crossref.302d00cc31bcb5b7d8658fce3d99e40c

    Article  ADS  Google Scholar 

  73. P. Lesaffre, Z. Han, C.A. Tout, P. Podsiadlowski, R.G. Martin, . MNRAS. 368, 187 (2006). https://doi.org/10.1111/j.1365-2966.2006.10068.x

    Article  ADS  Google Scholar 

Download references

Funding

M.M. acknowledges financial support from FAPESP under the thematic project 13/26258-4, CAPES, CNPq, and INCT-FNA (Proc. No. 464898/2014-5). E.0. is grateful for the support of Pró-Reitoria de Pesquisa e Inovação - EDITAL 01/2020/PRPI/UFCA. J.G.C. is grateful for support of CNPq (421265/2018-3 and 305369/2018-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Malheiro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malheiro, M., Otoniel, E. & Coelho, J.G. Relevance of Dynamical Nuclear Processes in Quantum Complex Systems of Massive White Dwarfs. Braz J Phys 51, 223–230 (2021). https://doi.org/10.1007/s13538-020-00840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00840-0

Keywords

Navigation