Skip to main content
Log in

Quantum Coherence Behaviors for a Uniformly Accelerated Atom Immersed in Fluctuating Vacuum Electromagnetic Field with a Boundary

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamics of quantum coherence (QC) for a uniformly accelerated atom interacting with fluctuating electromagnetic field subject to a conductor boundary. We firstly derive the master equation that the atom evolution obeys. We find that without boundary, QC declines under the effect of Unruh thermal bath and vacuum fluctuation. However, with a boundary, the degradation, fluctuation, and preservation of QC are closely related to boundary effect, atomic polarization, and acceleration. Furthermore, in the presence of a boundary, QC can effectively be protected under the influence of the vacuum fluctuation and Unruh thermal effect when the atom is transversely polarizable and near this boundary, and the presence of boundary gives us more freedom of controlling the QC behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E.C.G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. M.O. Scully, Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67, 1855 (1991)

    Article  ADS  Google Scholar 

  3. L. Mandel, E. Wolf. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  4. J.K. Asbóth, J. Calsamiglia, H. Ritsch, Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    Article  ADS  Google Scholar 

  5. W. Vogel, J. Sperling, Unified quantification of nonclassicality and entanglement. Phys. Rev. A. 89, 052302 (2014)

    Article  ADS  Google Scholar 

  6. M. Mraz, J. Sperling, W. Vogel, B. Hage, Witnessing the degree of nonclassicality of light. Phys. Rev. A. 90, 033812 (2014)

    Article  ADS  Google Scholar 

  7. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, LutzNanoscale E., Heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  8. J. Åberg, Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  9. L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Quantum-enhanced absorption refrigerators. Sci. Rep. 4, 3949 (2014)

    Article  ADS  Google Scholar 

  10. V. Narasimhachar, G. Gour, Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  11. M. Lostaglio, D. Jennings, T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  12. M. Nielsen, I. Chuang. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  13. Z.M. Huang, H.Z. Situ, L.H. Zhao, Payoffs and coherence of a quantum two-player game under noisy environment. Eur. Phys. J. Plus. 132, 152 (2017)

    Article  Google Scholar 

  14. Z.M. Huang, Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16, 207 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Z.M. Huang, H.Z. Situ, Optimal protection of quantum coherence in noisy environment. Int. J. Theor. Phys. 56, 503 (2017)

    Article  Google Scholar 

  16. Z.M. Huang, Quantum correlation and coherence in the background of dilaton black hole. J. Phys. Soc. Jpn. 86, 124007 (2017)

    Article  ADS  Google Scholar 

  17. Z.M. Huang, H.Z. Situ, Non-markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Z.M. Huang, H.Z. Situ, Quantum coherence behaviors of fermionic system in non-inertial frame. Quantum Inf. Process. 17, 95 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. B. Deveaud-Plédran, A. Quattropani, P. Schwendimann (eds.), Quantum coherence in solid state systems, Vol. 171 (IOS Press, Amsterdam, 2009). ISBN: 978-1-60750-039-1

  20. C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, F. Nori, Witnessing Quantum Coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  21. G.S. Engel, T.R. Calhoun, E.L. Read, T.-K. Ahn, T. Manc̆al, Y.-C. Cheng, R.E. Blakenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature (London). 446, 782 (2007)

    Article  ADS  Google Scholar 

  22. E. Collini, C.Y. Wong, K.E. Wilk, P.M.G. Curmi, P. Brumer, G.D. Scholes, Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature (London). 463, 644 (2010)

    Article  ADS  Google Scholar 

  23. N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, F. Nori, Quantum biology. Nat. Phys. 9, 10 (2013)

    Article  Google Scholar 

  24. A.W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S.F. Huelga, M.B. Plenio, The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat. Phys. 9, 113 (2013)

    Article  Google Scholar 

  25. J. Cai, M.B. Plenio, Chemical compass model for avian magnetoreception as a quantum coherent device. Phys. Rev. Lett. 111, 230503 (2013)

    Article  ADS  Google Scholar 

  26. A. Streltsov, U. Singh, H.S. Dhar, M.N. Bera, G. Adesso, Measuring quantum coherence with entanglement

  27. Y. Yao, X. Xiao, L. Ge, C.P. Sun, Quantum coherence in multipartite systems. Phys. Rev. A. 92, 022112 (2015)

    Article  ADS  Google Scholar 

  28. Z. Xi, Y. Li, H. Fan, Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  29. J.J. Ma, B. Yadin, D. Girolami, V. Vedral, M. Gu, Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  30. T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  31. D. Girolami, Observable measure of Quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  32. J.L. Zhang, H.W. Yu, Entanglement generation in atoms immersed in a thermal bath of external quantum scalar fields with a boundary. Phys. Rev. A. 75, 012101 (2007)

    Article  ADS  Google Scholar 

  33. X.B. Liu, Z.H. Tian, J.C. Wang, J.L. Jing, Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15, 3677 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. Z.M. Huang, H.Z. Situ, Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar feld. Ann. Phys. 377, 484 (2017)

    Article  ADS  Google Scholar 

  35. Z.M. Huang, Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary. Quantum Inf. Process. 17, 221 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. S.J. Cheng, H.W. Yu, J.W. Hu, Entanglement dynamics for uniformly accelerated two-level atoms in the presence of a reflecting boundary. Phys. Rev. D. 98, 025001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. W.G. Unruh, Notes on black-hole evaporation. Phys. Rev. D. 14, 870 (1976)

    Article  ADS  Google Scholar 

  38. H. -P. Breuer, F. Petruccione. The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  39. V. Gorini, A. Kossakowski, E.C.G. Surdarshan, Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  40. G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  41. N.D. Birrell, P.C.W. Davies. Quantum Fields Theory in Curved Space (Cambridge University Press, Cambridge, 1982)

    Book  Google Scholar 

  42. Y. Jin, H.W. Yu, Electromagnetic shielding in quantum metrology. Phys. Rev. A. 91, 022120 (2015)

    Article  ADS  Google Scholar 

Download references

Funding

Huang is supported by the National Natural Science Foundation of China (61871205), the Innovation Project of Department of Education of Guangdong Province (2017KTSCX180), and the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010). Zhang is supported by the Young Science and Technology Talent Growth Fund Project of Education Department of Guizhou Province of China (Qian Jiao He KY Zi[2018]426), the Major Special Fund Project of Research and Innovation for Qiannan Normal university for Nationalities of China (QNSY2018BS015), the Industrial Technology Foundation of Qiannan State of China (Qiannan Ke He Gong Zi (2017) 9 Hao) and the Scientific Research Foundation for High-level Talents of Qiannan Normal University for Nationalities (qnsyrc201716).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Zhang, W. Quantum Coherence Behaviors for a Uniformly Accelerated Atom Immersed in Fluctuating Vacuum Electromagnetic Field with a Boundary. Braz J Phys 49, 161–167 (2019). https://doi.org/10.1007/s13538-019-00641-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00641-0

Keywords

Navigation