Skip to main content
Log in

Entanglement and Electronic Correlation in Polycyclic Aromatic Molecules

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Based on the diagonalization of an effective Hamiltonian, we investigate the role of electronic correlation on the aromatic behavior of polycyclic aromatic hydrocarbons (PAHs). We show that for benzene and several examples of PAHs, a singular change in the electronic distribution happens at a relatively narrow range of the Coulomb interaction strength; in each case, the CC bond distribution pattern agrees with the known chemical behavior of the corresponding compound. We explore the link between electronic correlation and information entropy and show that several signatures of fluctuations in the one-particle entropy occur at the same range of values of the Coulomb parameter that correspond to a realistic bond-order distribution of the PAHs. These results indicate that the singular stability of the electronic distribution of aromatic compounds is associated with an optimum range of correlation effects, which can be understood in terms of the entanglement of the two sub-lattices of alternating carbon atoms and the presence of a localization transition of the overall electronic density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.J. Watts, S.H. Strogatz, Collective dynamics of /‘small-world/’ networks. Nature 393(6684), 440–442 (1998)

    Article  ADS  MATH  Google Scholar 

  2. R. Albert, A.-L. Barabási, Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. L. Gong, P. Tong, von Neumann entropy and localization-delocalization transition of electron states in quantum small-world networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 74(5 Pt 2), 056103 (2006)

    Article  ADS  Google Scholar 

  4. K. Ohno, Some remarks on the Pariser-Parr-Pople method. Theor. Chim. Acta 2(3), 219–227 (1964)

    Article  Google Scholar 

  5. J. Hubbard, Electron correlations in narrow energy bands. Proc R Soc Lond A 276(1365), 238–257 (1963)

    Article  ADS  Google Scholar 

  6. E. Clar, Polycyclic Hydrocarbons (Academic Press, London, 1964)

    Book  Google Scholar 

  7. Leach, S., Physical and chemical properties of polycyclic aromatic hydrocarbons, in Interstellar Dust: Proceedings of the 135th Symposium of the International Astronomical Union, Held in Santa Clara, California, July 26–30, 1988, L.J. Allamandola and A.G.G.M. Tielens, Editors. Springer Netherlands: Dordrecht. p. 155–171, (1989)

  8. J.E. Anthony, Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106(12), 5028–5048 (2006)

    Article  Google Scholar 

  9. S. Fujii, T. Enoki, Nanographene and graphene edges: electronic structure and nanofabrication. Acc. Chem. Res. 46(10), 2202–2210 (2013)

    Article  Google Scholar 

  10. H.F. Bettinger, Electronic structure of higher acenes and polyacene: the perspective developed by theoretical analyses. Pure Appl. Chem. 82(4), 905–915 (2010)

    Article  Google Scholar 

  11. C.E. Bostrom et al., Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 110(Suppl 3), 451–488 (2002)

    Article  Google Scholar 

  12. F.J. Lovas et al., Interstellar chemistry: a strategy for detecting polycyclic aromatic hydrocarbons in space. J. Am. Chem. Soc. 127(12), 4345–4349 (2005)

    Article  Google Scholar 

  13. P. Rivero, C.A. Jimenez-Hoyos, G.E. Scuseria, Entanglement and polyradical character of polycyclic aromatic hydrocarbons predicted by projected Hartree-Fock theory. J. Phys. Chem. B 117(42), 12750–12758 (2013)

    Article  Google Scholar 

  14. E.R. Gagliano et al., Correlation-functions of the antiferromagnetic Heisenberg model using a modified Lanczos method. Phys. Rev. B 34(3), 1677–1682 (1986)

    Article  ADS  Google Scholar 

  15. Y.C. Chen, H.Q. Lin, Phase separation in the one-dimensional t-V model. Phys C, Supercond 282-287, 1871–1872 (1997)

    Article  ADS  Google Scholar 

  16. T. Giamarchi, Quantum Physics in One Dimension. The International Series of Monographs on Physics, vol 121 (Oxford University Press, Oxford, 2004)

  17. S. Marcin, B. Evgeni, The generalized t-V model in one dimension. J. Phys. Conf. Ser. 592(1), 012057 (2015)

    Google Scholar 

  18. A.T. Balaban et al., Correlations between local aromaticity indices of bipartite conjugated hydrocarbons. J. Phys. Chem. A 114(18), 5870–5877 (2010)

    Article  Google Scholar 

  19. Eaton, J.W. et al., GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations (CreateSpace Independent Publishing Platform, 2014)

  20. R. Mondaini, M. Rigol, Many-body localization and thermalization in disordered Hubbard chains. Phys. Rev. A 92(4), 041601 (2015)

    Article  ADS  Google Scholar 

  21. A. Shurki et al., How valence bond theory can help you understand your (bio)chemical reaction. Chem. Soc. Rev. 44(5), 1037–1052 (2015)

    Article  Google Scholar 

  22. Z. Rashid, J.H. van Lenthe, Generation of Kekule valence structures and the corresponding valence bond wave function. J. Comput. Chem. 32(4), 696–708 (2011)

    Article  Google Scholar 

  23. P.W. Fowler et al., Perimeter ring currents in benzenoids from Pauling bond orders. Phys. Chem. Chem. Phys. 18(17), 11756–11764 (2016)

    Article  Google Scholar 

  24. M. Sola, Forty years of Clar’s aromatic pi-sextet rule. Front Chem 1(22), 22 (2013)

    Google Scholar 

  25. P.C. Hiberty, G. Ohanessian, F. Delbecq, The valence-bond description of conjugated molecules. 40. Theoretical study of the Mills-Nixon effect, a phenomenon of .pi.-bond localization in small ring annelated aromatics. J. Am. Chem. Soc. 107(11), 3095–3100 (1985)

    Article  Google Scholar 

  26. D.M. Collins, Entropy maximizations on electron density. Z Naturforsch A 48(1–2), 68–74 (1993)

    ADS  Google Scholar 

  27. R.O. Esquivel et al., Physical interpretation of information entropy: numerical evidence of the Collins conjecture. Phys. Rev. A 54(1), 259–265 (1996)

    Article  ADS  Google Scholar 

  28. J.C. Ramírez et al., Jaynes information entropy of small molecules: numerical evidence of the Collins conjecture. Phys. Rev. A 56(6), 4477–4482 (1997)

    Article  ADS  Google Scholar 

  29. E.T. Jaynes, R.D. Rosenkrantz, E.T. Jaynes : papers on probability, statistics, and statistical physics. (Reidel, Dordrecht, 1983)

  30. R.P. Sagar et al., Relationships between Jaynes entropy of the one-particle density matrix and Shannon entropy of the electron densities. J. Chem. Phys. 116(21), 9213–9221 (2002)

    Article  ADS  Google Scholar 

  31. Á. Nagy, Shannon entropy density as a descriptor of Coulomb systems. Chem. Phys. Lett. 556, 355–358 (2013)

    Article  ADS  Google Scholar 

  32. N. Flores-Gallegos, Informational energy as a measure of electron correlation. Chem. Phys. Lett. 666, 62–67 (2016)

    Article  ADS  Google Scholar 

  33. S. Bera et al., Many-body localization characterized from a one-particle perspective. Phys. Rev. Lett. 115(4), 046603 (2015)

    Article  ADS  Google Scholar 

  34. J.C. Ramírez et al., Amount of information present in the one-particle density matrix and the charge density. Phys. Rev. A 58(5), 3507–3515 (1998)

    Article  ADS  Google Scholar 

  35. J.A. Kjall, J.H. Bardarson, F. Pollmann, Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett. 113(10), 107204 (2014)

    Article  ADS  Google Scholar 

  36. J. Gemmer et al., Quantum Thermodynamics: Emergence of Thermodynamic Behavior Within Composite Quantum Systems, in Lect. Notes in Phys. vol 784 (Springer, Heidelberg, 2009)

  37. M.-H. Chung, D.P. Landau, Von Neumann entropy and bipartite number fluctuation in quantum phase transitions. Phys. Rev. B 83(11), 113104 (2011)

    Article  ADS  Google Scholar 

  38. G. Vidal et al., Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90(22), 227902 (2003)

    Article  ADS  Google Scholar 

  39. Y. Chen et al., Sublattice entanglement and quantum phase transitions in antiferromagnetic spin chains. New J. Phys. 8(6), 97–97 (2006)

    Article  ADS  Google Scholar 

  40. A. Kitaev, J. Preskill, Topological entanglement entropy. Phys. Rev. Lett. 96(11), 110404 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Hamma et al., Entanglement, fidelity, and topological entropy in a quantum phase transition to topological order. Phys. Rev. B 77(15), 155111 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  42. S. Szalay et al., The correlation theory of the chemical bond. Sci Rep 7(1), 2237 (2017)

    Article  ADS  Google Scholar 

  43. R.F. Nalewajski, E. Broniatowska, Entropy displacement and information distance analysis of electron distributions in molecules and their Hirshfeld atoms. J. Phys. Chem. A 107(32), 6270–6280 (2003)

    Article  Google Scholar 

  44. R.F. Nalewajski, Information Theory of Molecular Systems, vol xviii, 1st edn. (Elsevier, Amsterdam, 2006) 443 p

    Google Scholar 

  45. K. Boguslawski et al., Entanglement measures for single- and multireference correlation effects. J. Phys. Chem. Lett. 3(21), 3129–3135 (2012)

    Article  MathSciNet  Google Scholar 

  46. K. Boguslawski et al., Orbital entanglement in bond-formation processes. J. Chem. Theory Comput. 9(7), 2959–2973 (2013)

    Article  Google Scholar 

  47. N. Flores-Gallegos, Generalized Shannon’s entropy as generator of local density functionals. Chem. Phys. Lett. 676, 1–5 (2017)

    Article  ADS  Google Scholar 

  48. L. Delle Site, Shannon entropy and many-electron correlations: theoretical concepts, numerical results, and Collins conjecture. Int. J. Quantum Chem. 115(19), 1396–1404 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor A. M. Macedo for very helpful discussions along this work. We acknowledge the financial support from CNPq and INFO National Institute. R. A. M. was the recipient of CNPq graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso P. de Melo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, R.A., de Melo, C.P. Entanglement and Electronic Correlation in Polycyclic Aromatic Molecules. Braz J Phys 47, 575–582 (2017). https://doi.org/10.1007/s13538-017-0535-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-017-0535-7

Keywords

Navigation