Skip to main content
Log in

Exact Solutions of the Gardner Equation and their Applications to the Different Physical Plasmas

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Traveling wave solution of the Gardner equation is studied analytically by using the two dependent (G /G,1/G)-expansion and (1/G )-expansion methods and direct integration. The exact solutions of the Gardner equations are obtained. Our analytic solutions are applied to the unmagnetized four-component and dusty plasma systems consisting of hot protons and electrons to investigate dynamical features of the solitons and shock waves produced in these systems. A wide variety of parameters of the plasma is used, and the basic features of the Gardner solitons that are beyond the existing study in literature are found. It is observed that the analytic solutions from (G /G,1/G)-expansion and (1/G )-expansion methods only produce shock waves but the solitary waves are found from the analytic solutions derived from the direct integration. It is also noted that the superhot electrons and relative mass density of the electrons significantly effect the soliton’s amplitude, width, and position. We have also numerically proved that the combination of every value of nomalized density μ 1 or temperature ratio σ 1 with the other sets of plasma parameters creates a region where the solutions have similar physical properties. The time-dependent behavior of the soliton is also studied, and a periodic motion of soliton along the phase variable η is found during the evolution. The investigations and the limits presented in this study may be helpful for studying and understanding the nonlinear properties of the solitary and shock waves seen in various physical and astrophysical plasma systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Zuntao, L. Shida, S. Liu, Chaos, Solitons & Fract. 20, 301–309 (2004)

    Article  Google Scholar 

  2. A. -M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 12, 1395–1404 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Biswas, Adv. Stud. Theor. Phys. 2(16), 787–794 (2008)

    MathSciNet  Google Scholar 

  4. A. M. Kamchatnov, Y. -H. Kuo, T. -C. Lin, T. -L. Horng, S. -C. Gou, R. Clift, G. A. El, R. H. J. Grimshaw, Phys. Rev. E. 86, 036605 (2012)

    Article  ADS  Google Scholar 

  5. G. Betchewe, K. K. Victor, B. B. Thomas, K. T. Crepin, Appl. Math. Comput. 223, 377–388 (2013)

    Article  MathSciNet  Google Scholar 

  6. A. Mannan, A. A. Mamun, Phys. Rev. E. 84, 026408 (2011)

    Article  ADS  Google Scholar 

  7. A. A. Mamun, F. Deeba, Plasma Phys. Rep. 38, 338–342 (2012)

    Article  ADS  Google Scholar 

  8. M. M. Masud, M. Asaduzzaman, A. A. Mamun, Phys. Plasmas. 19, 103706 (2012)

    Article  ADS  Google Scholar 

  9. M. Hasan, M. M. Hossain, A. A. Mamun, Astrophys. Space Sci. 345, 113–118 (2013)

    Article  ADS  Google Scholar 

  10. F. Deeba, S. Tasnim, A. A. Mamun, IEEE Trans. Plasma Sci. 40(9), 2247–2253 (2012)

    Article  ADS  Google Scholar 

  11. M. M. Hossain, A. A. mamun, J. Phys. A Math. Theor. 45(12), 125501 (2012)

    Article  ADS  Google Scholar 

  12. A. A. Mamun, S. Islam, J. Geophys. Res. 116, A12323 (2011)

    ADS  Google Scholar 

  13. M. L. Wang, X. Li, J. Zhang, Phys. Lett. A. 372(4), 417–423 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Daghan, O. Donmez, A. Tuna, Nonlinear Anal. Real World Appl. 11(3), 2152–2163 (2010)

    Article  MathSciNet  Google Scholar 

  15. D. Daghan, O. Yildiz, S. Toros, Math. Slovaca. 65(3), 607–632 (2015)

    Article  MathSciNet  Google Scholar 

  16. D. Daghan, O. Donmez, Phys. Plasmas. 22, 072114 (2015)

    Article  ADS  Google Scholar 

  17. A. Bekir, Lett, Phys. A. 372, 3400–3406 (2008)

    Article  MathSciNet  Google Scholar 

  18. E. M. E. Zayed, K. A. Gepreel, J. Math. Phys. 50, 013502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. L. -X. Li, E. -Q. Li, M. L. Wang, Appl. Math. J. Chinese Univ. 25, 454 (2010)

    Article  ADS  Google Scholar 

  20. E. M. E. Zayed, M. A. M. Abdelaziz, Math. Probl. Eng. 2012, 725061 (2012)

    Article  MathSciNet  Google Scholar 

  21. E. M. E. Zayed, S. A. Hoda Ibrahim, M. A. M. Abdelaziz, J. Appl.Math. 2012, 560531 (2012)

    Article  MathSciNet  Google Scholar 

  22. S. Demiray, O. Unsal, A. Bekir, J. Egyptian Math. Soc. 23, 78 (2015)

    Article  MathSciNet  Google Scholar 

  23. A. A. Yokus. Ph.D. Thesis (Firat University, Elazig, 2011)

    Google Scholar 

  24. S. Demiray, O. Unsal, A. Bekir, Acta. Phys. Pol. A. 125(5), 1093–1098 (2014)

    Article  Google Scholar 

  25. D. A. Mendis, M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 418 (1994)

    ADS  Google Scholar 

  26. P. K. Shukla, Phys. Plasmas. 8, 1791 (2001)

    Article  ADS  Google Scholar 

  27. P. K. Shukla, Phys. Plasma. 10, 1619 (2003)

    Article  ADS  Google Scholar 

  28. A. Barkan, R. L. Merlino, N. DAngelo, Phys. Plasmas. 2, 3563 (1995)

    Article  ADS  Google Scholar 

  29. R. L. Merlino, J. H. Goree, Phys. Today. 57, 32 (2004)

    Article  Google Scholar 

  30. M. Emamuddin, S. Yasmin, A. A. Mamun, Phys. Plasmas. 20, 043705 (2013)

    Article  ADS  Google Scholar 

  31. M. Emamuddin, A. A Mamun, Astrophys. Space Sci. 351, 561 (2014)

    Article  ADS  Google Scholar 

  32. M. S. Alam, M. M. Masud, A.A. Mamun, Astrophys. Space Sci. 349, 245 (2014)

    Article  ADS  Google Scholar 

  33. M. Ferdousi, S. Yasmin, S. Ashraf, A. A. Mamun, Astrophys. Space Sci. 352, 579 (2014)

    Article  ADS  Google Scholar 

  34. A. Rafat, M. M. Rahman, M. S. Alam, A. A. Mamun, Astrophys. Space Sci. 358, 19 (2015)

    Article  ADS  Google Scholar 

  35. M. Tribeche, A. Merriche, Phys. Plasmas. 034502, 18 (2011)

    Google Scholar 

  36. J. H. V. Hguyen, P. Dyke, D. Luo, B. A. Malomed, R. G. Hulet, Nat. Phys. 10, 918 (2014)

    Article  Google Scholar 

  37. M. M. Masud, S. Sultana, A. A. Mamun, Astrophys. Space Sci. 348, 99 (2013)

    Article  ADS  Google Scholar 

  38. A. K. Harding, D. lai, Rep. Prog. Phys. 69, 2631 (2006)

    Article  ADS  Google Scholar 

  39. G. Gervino, A. lavagno, D. Pigato, Cent. Eur. J. Phys. 10, 594 (2012)

    Google Scholar 

  40. S. L. Shapiro, S. A. Teukolsky. Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Donmez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daghan, D., Donmez, O. Exact Solutions of the Gardner Equation and their Applications to the Different Physical Plasmas. Braz J Phys 46, 321–333 (2016). https://doi.org/10.1007/s13538-016-0420-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0420-9

Keywords

Navigation