Skip to main content
Log in

Nanostructures in non-invasive prenatal genetic screening

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Prenatal screening is an important issue during pregnancy to ensure fetal and maternal health, as well as preventing the birth of a defective fetus and further problems such as extra costs for the family and society. The methods for the screening have progressed to non-invasive approaches over the recent years. Limitations of common standard screening tests, including invasive sampling, high risk of abortion and a big delay in result preparation have led to the introduction of new rapid and non-invasive approaches for screening. Non-invasive prenatal screening includes a wide range of procedures, including fetal cell-free DNA analysis, proteome, RNAs and other fetal biomarkers in maternal serum. These biomarkers require less invasive sampling than usual methods such as chorionic villus sampling, amniocentesis or cordocentesis. Advanced strategies including the development of nanobiosensors and the use of special nanoparticles have provided optimization and development of NIPS tests, which leads to more accurate, specific and sensitive screening tests, rapid and more reliable results and low cost, as well. This review discusses the specifications and limitations of current non-invasive prenatal screening tests and introduces a novel collection of detection methods reported studies on nanoparticles’ aided detection. It can open a new prospect for further studies and effective investigations in prenatal screening field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PGD:

Pre-gestation diagnosis,

NIPS:

Non-Invasive prenatal screening

IPS:

Invasive prenatal screening

CVS:

Chorionic villus sampling

cff-DNA:

Cell-free fetal DNA

HCG:

Human chorionic gonadotropin

NT:

Nuchal translucency

PAPP-A:

Pregnancy-associated plasma protein A

DS:

Down syndrome

FISH:

Fluorescence in site hybridization

MLPA:

Multiplex ligation-dependent probe amplification

QF-PCR:

Quantitative fluorescence PCR, CMA: chromosomal microarray analysis

aCGH:

Array-based comparative genomic hybridization, SNPs: single-nucleotide polymorphisms

WES:

Whole-exome sequencing, Indels: insertions or deletions. SNVs: single-nucleotide variants

CNVs:

Copy number variants

NGS:

Next-generation sequencing

AFP:

Alpha-fetoprotein

miRNA:

Micro-RNA

lncRNA:

Long non-coding RNAs

circRNA:

Circular RNA

nRBCs:

Fetal nucleated red blood cells

cbNIPD:

Cell-based non-invasive prenatal diagnosis

NP:

Nano particle

QD:

Quantom dot

PtNPs:

Platinum nanoparticles

HCR:

Hybridization chain reaction

CNT:

Carbon nanotubes

SWCNT:

Single-wall carbon-nanotubes

MWCNT:

Multi-wall carbon-nanotubes

References

  1. Carlson LM, Vora NL. Prenatal diagnosis: screening and diagnostic tools. Obstetrics and Gynecology Clinics. 2017;44(2):245–56.

    Google Scholar 

  2. Cordeiro CN, Gemignani ML. Gynecologic Malignancies in Pregnancy. Obstetrical \& Gynecological Survey. 2017;72(3):184--93. doi: https://doi.org/10.1097/OGX.0000000000000407.

  3. Post AL, Mottola AT, Kuller JA. Whatʼs New in Prenatal Genetics? A Review of Current Recommendations and Guidelines. Obstetrical \& Gynecological Survey. 2017;72(10):610--7. doi: https://doi.org/10.1097/OGX.0000000000000491.

  4. Verlinsky Y, Ginsberg N, Lifchez A, Valle J, Moise J, Strom CM. Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod. 1990;5(7):826–9.

    Article  Google Scholar 

  5. Dervan AP, Deverka PA, Trosman JR, Weldon CB, Douglas MP, Phillips KA. Payer decision making for next-generation sequencing–based genetic tests: insights from cell-free DNA prenatal screening. Genet Med. 2017;19(5):559–67. https://doi.org/10.1038/gim.2016.145.

    Article  Google Scholar 

  6. Bulletins A. ACOG Practice Bulletin No. 77: screening for fetal chromosomal abnormalities. Obstet Gynecol. 2007;109(1):217–27

  7. Krstić N, Običan SG. Current landscape of prenatal genetic screening and testing. Birth defects res. 2020;112(4):321–31.

    Article  Google Scholar 

  8. Lichtenbelt KD, Knoers NVAM, Schuring-Blom GH. From Karyotyping to Array-CGH in Prenatal Diagnosis. Cytogenet Genome Res. 2011;135(3–4):241–50. https://doi.org/10.1159/000334065.

    Article  Google Scholar 

  9. Simpson JL. Invasive procedures for prenatal diagnosis: Any future left? Best Practice. Res Clin Obstetr Gynaecol. 2012;26(5):625–38. https://doi.org/10.1016/j.bpobgyn.2012.05.007.

    Article  Google Scholar 

  10. Vermeesch JR, Voet T, Devriendt K. Prenatal and pre-implantation genetic diagnosis. Nat Rev Genet. 2016;17(10):643–56. https://doi.org/10.1038/nrg.2016.97.

    Article  Google Scholar 

  11. Aa B-A. Non-invasive prenatal diagnosis of single-gene disorders from maternal blood. Gene. 2012;504(1):144–9. https://doi.org/10.1016/j.gene.2012.04.045.

    Article  Google Scholar 

  12. Costa CuA. Non-invasive prenatal screening for chromosomal abnormalities using circulating cell-free fetal DNA in maternal plasma: Current applications, limitations and prospects. Egyptian J Med Hum Genet. 2017;18(1):1–7. https://doi.org/10.1016/j.ejmhg.2016.07.004.

    Article  Google Scholar 

  13. Vora NL, Hui L. Next-generation sequencing and prenatal'omics: advanced diagnostics and new insights into human development. Genetics in Medicine. 2018:1.

  14. Bianchi DW, Simpson JL, Jackson LG, Elias S, Holzgreve W, Evans MI, et al. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. Prenat Diagn. 2002;22(7):609–15. https://doi.org/10.1002/pd.347.

    Article  Google Scholar 

  15. Song Y, Huang S, Zhou X, Jiang Y, Qi Q, Bian X, et al. Non-invasive prenatal testing for fetal aneuploidies in the first trimester of pregnancy. Ultras in Obstetr Gynecol. 2015;45(1):55–60. https://doi.org/10.1002/uog.13460.

    Article  Google Scholar 

  16. Chan KCA. Clinical Applications of the Latest Molecular Diagnostics in Noninvasive Prenatal Diagnosis. 2012;12(1):47–65. https://doi.org/10.1007/128_2012_352.

    Article  Google Scholar 

  17. Beta J, Lesmes-Heredia C, Bedetti C, Akolekar R. Risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review of the literature. Minerva Ginecol. 2018;70(2):215–9.

    Google Scholar 

  18. Steele M, Breg WR Jr. Chromosome analysis of human amniotic-fluid cells. The Lancet. 1966;287(7434):383–5.

    Article  Google Scholar 

  19. Gardner RL, Edwards RG. Control of the sex ratio at full term in the rabbit by transferring sexed blastocysts. Nature. 1968;218(5139):346.

    Article  Google Scholar 

  20. Jacobson CB, Barter RH. Intrauterine diagnosis and management of genetic defects. Am J Obstet Gynecol. 1967;99(6):796–807.

    Article  Google Scholar 

  21. Handyside AH, Penketh RJA, Winston RML, Pattinson JK, Delhanty JDA, Tuddenham EGD. Biopsy of human preimplantation embryos and sexing by DNA amplification. The Lancet. 1989;333(8634):347–9.

    Article  Google Scholar 

  22. Handyside AH, Kontogianni EH, Hardy K, Winston RML. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344(6268):768.

    Article  Google Scholar 

  23. Griffin DK, Wilton LJ, Handvside AH, Winston RM, Delhanty JD. Dual fluorescent in situ hybridisation for simultaneous detection of X and Y chromosome-specific probes for the sexing of human preimplantation embryonic nuclei. Hum Genet. 1992;89(1):18–22.

    Article  Google Scholar 

  24. Findlay I, Quirke P, Hall J, Rutherford A. Fluorescent PCR: a new technique for PGD of sex and single-gene defects. J Assist Reprod Genet. 1996;13(2):96–103.

    Article  Google Scholar 

  25. Philip J, Bryndorf T, Christensen B. Prenatal aneuploidy detection in interphase cells by fluorescencein situ hybridization (Fish). Prenat Diagn. 1994;14(13):1203–15. https://doi.org/10.1002/pd.1970141306.

    Article  Google Scholar 

  26. Mansfield ES. Diagnosis of Down syndrome and other aneuploidies using quantitative polymerase chain reaction and small tandem repeat polymorphisms. Hum Mol Genet. 1993;2(1):43–50.

    Article  Google Scholar 

  27. Hillman S, Willams D, Carss K, McMullan D, Hurles M, Kilby M. Prenatal exome sequencing for fetuses with structural abnormalities: the next step. Ultrasound Obstet Gynecol. 2015;45(1):4–9.

    Article  Google Scholar 

  28. Lo YMD, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CWG, et al. Presence of fetal DNA in maternal plasma and serum. The Lancet. 1997;350(9076):485–7.

    Article  Google Scholar 

  29. Verlinsky Y, Rechitsky S, Schoolcraft W, Strom C, Kuliev A. Preimplantation diagnosis for Fanconi anemia combined with HLA matching. JAMA. 2001;285(24):3130–3.

    Article  Google Scholar 

  30. Chiu RW, Lau TK, Leung TN, Chow KC, Chui DH, Lo YD. Prenatal exclusion of β thalassaemia major by examination of maternal plasma. The Lancet. 2002;360(9338):998–1000.

    Article  Google Scholar 

  31. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucl Acids res. 2002;30(12):e57-e.

    Article  Google Scholar 

  32. Rickman L, Fiegler H, Shaw-Smith C, Nash R, Cirigliano V, Voglino G, et al. Prenatal detection of unbalanced chromosomal rearrangements by array CGH. J Med Genet. 2006;43(4):353–61.

    Article  Google Scholar 

  33. Le Caignec C, Spits C, Sermon K, De Rycke M, Thienpont B, Debrock S, et al. Single-cell chromosomal imbalances detection by array CGH. Nucl acids res. 2006;34(9):e68e.

    Article  Google Scholar 

  34. Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci. 2008;105(42):16266–71. https://doi.org/10.1073/pnas.0808319105.

    Article  Google Scholar 

  35. Chiu RWK, Chan KCA, Gao Y, Lau VYM, Zheng W, Leung TY, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci. 2008;105(51):20458–63. https://doi.org/10.1073/pnas.0810641105.

    Article  Google Scholar 

  36. Lun FM, Chiu RW, Sun K, Leung TY, Jiang P, Chan KA, et al. Noninvasive prenatal methylomic analysis by genomewide bisulfite sequencing of maternal plasma DNA. Clin Chem. 2013;59(11):1583–94.

    Article  Google Scholar 

  37. Lo YD, Chan KA, Sun H, Chen EZ, Jiang P, Lun FM, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Science translational medicine. 2010;2(61):61ra91–61ra91.

  38. Voet T, Kumar P, Van Loo P, Cooke SL, Marshall J, Lin M-L, et al. Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res. 2013;41(12):6119–38.

    Article  Google Scholar 

  39. Tsui NB, Jiang P, Wong YF, Leung TY, Chan KA, Chiu RW, et al. Maternal plasma RNA sequencing for genome-wide transcriptomic profiling and identification of pregnancy-associated transcripts. Clin Chem. 2014;60(7):954–62.

    Article  Google Scholar 

  40. Talkowski ME, Ordulu Z, Pillalamarri V, Benson CB, Blumenthal I, Connolly S, et al. Clinical diagnosis by whole-genome sequencing of a prenatal sample. N Engl J Med. 2012;367(23):2226–32.

    Article  Google Scholar 

  41. Natesan SA, Bladon AJ, Coskun S, Qubbaj W, Prates R, Munne S, et al. Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro. Genet Med. 2014;16(11):838.

    Article  Google Scholar 

  42. Wald NJ, Huttly WJ, Bestwick JP, Old R, Morris JK, Cheng R, et al. Prenatal reflex DNA screening for trisomies 21, 18, and 13. Genet Med. 2018;20(8):825.

    Article  Google Scholar 

  43. Chang MY, Kim AR, Kim MY, Kim S, Yoon J, Han JJ, et al. Development of novel noninvasive prenatal testing protocol for whole autosomal recessive disease using picodroplet digital PCR. Sci Rep. 2016;6:37153.

    Article  Google Scholar 

  44. Yenilmez ED, Kökbaş U, Tuli A. A new alternative approach for RhD Incompatibility; determination Fetal RhD Status via Biosensor technology. Blood Groups. IntechOpen; 2019.

  45. Feng C, He Z, Cai B, Peng J, Song J, Yu X, et al. Non-invasive prenatal diagnosis of chromosomal aneuploidies and microdeletion syndrome using fetal nucleated red blood cells isolated by nanostructure microchips. Theranostics. 2018;8(5):1301.

    Article  Google Scholar 

  46. Chiu RWK, Lui W–b, Cheung M–c, Kumta N, Farina A, Banzola I, et al. Time profile of appearance and disappearance of circulating placenta-derived mRNA in maternal plasma. Clinical chemistry. 2006;52(2):313–6

  47. Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai RS, Conrads TP, et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Molecular & Cellular Proteomics. 2004;3(4):311 26.

  48. Geyer PE, Holdt LM, Teupser D, Mann M. Revisiting biomarker discovery by plasma proteomics. Molecular systems biology. 2017;13(9).

  49. Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347.

    Article  Google Scholar 

  50. Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M. Plasma proteome profiling to assess human health and disease. Cell Syst. 2016;2(3):185–95.

    Article  Google Scholar 

  51. An D, Wei X, Li H, Gu H, Huang T, Zhao G, et al. Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics. Sci Rep. 2015;5:17559.

    Article  Google Scholar 

  52. Blankley RT, Fisher C, Westwood M, North R, Baker PN, Walker MJ, et al. A label-free selected reaction monitoring workflow identifies a subset of pregnancy specific glycoproteins as potential predictive markers of early-onset pre-eclampsia. Molecul & Cellul Proteom. 2013;12(11):3148–59.

    Article  Google Scholar 

  53. Wagner R, Tse WH, Gosemann J-h, Lacher M, Keijzer R. Prenatal maternal biomarkers for the early diagnosis of congenital malformations : a review. Pediatric Research. 2019(November 2018):1-7. https://doi.org/10.1038/s41390-019-0429-1.

  54. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91(3):827–87.

    Article  Google Scholar 

  55. Khoshgoo N, Kholdebarin R, Pereira-Terra P, Mahood TH, Falk L, Day CA, et al. Prenatal microRNA miR-200b therapy improves nitrofen-induced pulmonary hypoplasia associated with congenital diaphragmatic hernia. Ann Surg. 2019;269(5):979–87.

    Article  Google Scholar 

  56. Rodosthenous RS, Burris HH, Sanders AP, Just AC, Dereix AE, Svensson K, et al. Second trimester extracellular microRNAs in maternal blood and fetal growth: an exploratory study. Epigenetics. 2017;12(9):804–10.

    Article  Google Scholar 

  57. Pereira-Terra Pbbi, Deprest JA, Kholdebarin R, Khoshgoo N, DeKoninck P, Munck AA, et al. Unique tracheal fluid microRNA signature predicts response to FETO in patients with congenital diaphragmatic hernia. Annals of surgery. 2015;262(6):1130-40

  58. Tan K, Wang X, Zhang Z, Miao K, Yu Y, An L, et al. Downregulation of miR-199a-5p disrupts the developmental potential of in vitro-fertilized mouse blastocysts. Biol Reprod. 2016;95(3):51–4.

    Article  Google Scholar 

  59. Bay B, Lyngs. Childhood growth of singletons conceived following in vitro fertilisation or intracytoplasmic sperm injection: a systematic review and meta-analysis. BJOG: An International Journal of Obstetrics & Gynaecology. 2019;126(2):158-66

  60. Carreras-Badosa G, Bonmat$\backslash$'$\backslash$i A, Ortega F-J, Mercader J-M, Guindo-Mart$\backslash$'$\backslash$inez M, Torrents D, et al. Dysregulation of placental miRNA in maternal obesity is associated with pre-and postnatal growth. The Journal of Clinical Endocrinology & Metabolism. 2017;102(7):2584-94

  61. Yang H, Ma Q, Wang Y, Tang Z. Clinical application of exosomes and circulating microRNAs in the diagnosis of pregnancy complications and foetal abnormalities. J Transl Med. 2020;18(1):1–9.

    Article  Google Scholar 

  62. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  Google Scholar 

  63. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    Article  Google Scholar 

  64. Yamada A, Yu P, Lin W, Okugawa Y, Boland CR, Goel A. A RNA-Sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci Rep. 2018;8(1):575.

    Article  Google Scholar 

  65. Gu M, Zheng A, Tu W, Zhao J, Li L, Li M, et al. Circulating LncRNAs as novel, non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Cell Physiol Biochem. 2016;38(4):1459–71.

    Article  Google Scholar 

  66. Greene J, Baird A-M, Brady L, Lim M, Gray SG, McDermott R, et al. Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci. 2017;4:38.

    Article  Google Scholar 

  67. Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA. 2014;20(12):1829–42.

    Article  Google Scholar 

  68. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384.

    Article  Google Scholar 

  69. Lasda E, Parker R. Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PloS one. 2016;11(2):e0148407.

    Article  Google Scholar 

  70. Peng L, Chen G, Zhu Z, Shen Z, Du C, Zang R, et al. Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschsprung’s disease. Oncotarget. 2017;8(1):808.

    Article  Google Scholar 

  71. Liu H, Hu Y, Zhuang B, Yin J, Chen X-H, Wang J, et al. Differential expression of circRNAs in embryonic heart tissue associated with ventricular septal defect. Int J Med Sci. 2018;15(7):703.

    Article  Google Scholar 

  72. Porreco RP, Garite TJ, Maurel K, Marusiak B, Ehrich M, van den Boom D, et al. Noninvasive prenatal screening for fetal trisomies 21, 18, 13 and the common sex chromosome aneuploidies from maternal blood using massively parallel genomic sequencing of DNA. Ame J Obstetr and Gynecol. 2014;211(4):365.e1-e12. https://doi.org/10.1016/j.ajog.2014.03.042.

    Article  Google Scholar 

  73. Neufeld-Kaiser WA, Cheng EY, Liu YJ. Positive predictive value of non-invasive prenatal screening for fetal chromosome disorders using cell-free DNA in maternal serum: independent clinical experience of a tertiary referral center. BMC Med. 2015;13(1):129. https://doi.org/10.1186/s12916-015-0374-8.

    Article  Google Scholar 

  74. Bianchi DW, Chiu RWK. Sequencing of circulating cell-free DNA during pregnancy. N Engl J Med. 2018;379(5):464–73.

    Article  Google Scholar 

  75. Fan HC, Gu W, Wang J, Blumenfeld YJ, El-Sayed YY, Quake SR. Non-invasive prenatal measurement of the fetal genome. Nature. 2012;487(7407):320–4. https://doi.org/10.1038/nature11251.

    Article  Google Scholar 

  76. Polin RA, Fox WW, Abman SH. Fetal and Neonatal Physiology: Expert Consult-Online and Print. Elsevier Health Sciences; 2011.

  77. Ramezanzadeh M, Khosravi S, Salehi R. Cell-free fetal nucleic acid identifier markers in maternal circulation. Advanced biomedical research. 2017;6.

  78. Malone FD, Canick JA, Ball RH, Nyberg DA, Comstock CH, Bukowski R, et al. First-trimester or second-trimester screening, or both, for Down’s syndrome. N Engl J Med. 2005;353(19):2001–11.

    Article  Google Scholar 

  79. Gil MM, Quezada MS, Revello R, Akolekar R, Nicolaides KH. Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: updated meta-analysis. Ultrasound in Obstetrics & Gynecology. 2015;45(3):249–66. https://doi.org/10.1002/uog.14791.

    Article  Google Scholar 

  80. Cuckle H, Maymon R. Development of prenatal screening—a historical overview. Semin Perinatol. 2016;40(1):12–22. https://doi.org/10.1053/j.semperi.2015.11.003.

    Article  Google Scholar 

  81. Norton ME, Jacobsson B, Swamy GK, Laurent LC, Ranzini AC, Brar H, et al. Cell-Free DNA Analysis for Noninvasive Examination of Trisomy. Obstetrical & Gynecological Survey. 2015;70(8):483-4.

  82. Doria G, Franco R, Baptista P. Nanodiagnostics: fast colorimetric method for single nucleotide polymorphism/mutation detection. IET Nanobiotechnol. 2007;1(4):53–7.

    Article  Google Scholar 

  83. Yu Z, Cai G, Liu X, Tang D. Pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection. Anal Chem. 2021;93(5):2916–25.

    Article  Google Scholar 

  84. Huang L, Chen J, Yu Z, Tang D. Self-powered temperature sensor with seebeck effect transduction for photothermal–thermoelectric coupled immunoassay. Anal Chem. 2020;92(3):2809–14.

    Article  Google Scholar 

  85. Jain KK. Appl Nanobiotechnol Clin Diagn. 2007;2009(2009):2002–9. https://doi.org/10.1373/clinchem.2007.090795.

    Article  Google Scholar 

  86. Jain KK. Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn. 2003;3(2):153–61.

    Article  Google Scholar 

  87. Zhang K, Lv S, Zhou Q, Tang D. CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction. Sensors and Actuators B: Chemical. 2020;307:127631.

  88. Lv S, Zhang K, Zhu L, Tang D. ZIF-8-assisted NaYF4: Yb, Tm@ ZnO converter with exonuclease III-powered DNA walker for near-infrared light responsive biosensor. Anal Chem. 2019;92(1):1470–6.

    Article  Google Scholar 

  89. Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol. 2013;6(1):9–26.

    Article  Google Scholar 

  90. Li J, Deng T, Chu X, Yang R, Jiang J, Shen G, et al. Rolling Circle Amplification Combined with Gold Nanoparticle Aggregates for Highly Sensitive Identification of Single-Nucleotide Polymorphisms. 2010;82(7):2811–6.

    Google Scholar 

  91. Liu J, Chen X, Wang Q, Xiao M, Zhong D, Sun W, et al. Ultrasensitive monolayer MoS2 field-effect transistor based DNA sensors for screening of down syndrome. Nano Lett. 2019;19(3):1437–44.

    Article  Google Scholar 

  92. Rizwan M, Hazmi M, Lim SA, Ahmed MU. A highly sensitive electrochemical detection of human chorionic gonadotropin on a carbon nano-onions/gold nanoparticles/polyethylene glycol nanocomposite modified glassy carbon electrode. J Electroanal Chem. 2019;833:462–70.

    Article  Google Scholar 

  93. Li G, Li W, Li S, Shi X, Liang J, Lai J, et al. A novel aptasensor based on light-addressable potentiometric sensor for the determination of Alpha-fetoprotein. Biochemical Engineering Journal. 2020;164:107780.

  94. Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534.

    Article  Google Scholar 

  95. Lin Z, Lv S, Zhang K, Tang D. Optical transformation of a CdTe quantum dot-based paper sensor for a visual fluorescence immunoassay induced by dissolved silver ions. J Mater Chem B. 2017;5(4):826–33.

    Article  Google Scholar 

  96. Zhou Q, Lin Y, Xu M, Gao Z, Yang H, Tang D. Facile synthesis of enhanced fluorescent gold–silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity. Anal Chem. 2016;88(17):8886–92.

    Article  Google Scholar 

  97. Lin Y, Zhou Q, Tang D, Niessner R, Yang H, Knopp D. Silver nanolabels-assisted ion-exchange reaction with CdTe quantum dots mediated exciton trapping for signal-on photoelectrochemical immunoassay of mycotoxins. Anal Chem. 2016;88(15):7858–66.

    Article  Google Scholar 

  98. Xia N, Chen Z, Liu Y, Ren H, Liu L. Peptide aptamer-based biosensor for the detection of human chorionic gonadotropin by converting silver nanoparticles-based colorimetric assay into sensitive electrochemical analysis. Sens Actuators, B Chem. 2017;243:784–91.

    Article  Google Scholar 

  99. Brouard D, Ratelle O, Bracamonte AG, St-Louis M, Boudreau D. Direct molecular detection of SRY gene from unamplified genomic DNA by metal-enhanced fluorescence and FRET. Anal Methods. 2013;5(24):6896–9.

    Article  Google Scholar 

  100. Yu Z, Cai G, Liu X, Tang D. Platinum nanozyme-triggered pressure-based immunoassay using a three-dimensional polypyrrole foam-based flexible pressure sensor. ACS Appl Mater Interfaces. 2020;12(36):40133–40.

    Article  Google Scholar 

  101. Zeng R, Luo Z, Zhang L, Tang D. Platinum nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework. Anal Chem. 2018;90(20):12299–306.

    Article  Google Scholar 

  102. Jeyaraj M, Gurunathan S, Qasim M, Kang M-H, Kim J-H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials. 2019;9(12):1719.

    Article  Google Scholar 

  103. Chen J, Yu C, Zhao Y, Niu Y, Zhang L, Yu Y, et al. A novel non-invasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs. Biosens Bioelectron. 2017;91:892–9.

    Article  Google Scholar 

  104. Algar WR, Krull UJ. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer ( FRET ). 2007;581:193–201. https://doi.org/10.1016/j.aca.2006.08.026.

    Article  Google Scholar 

  105. Liu D, Wu F, Zhou C, Shen H, Yuan H, Du Z, et al. Multiplexed immunoassay biosensor for the detection of serum biomarkers— \$ \beta \$ -HCG and AFP of down syndrome based on photoluminescent water-soluble CdSe/ZnS quantum dots. Sens Actuators, B Chem. 2013;186:235–43.

    Article  Google Scholar 

  106. Mo G, He X, Zhou C, Ya D, Feng J, Yu C, et al. A novel ECL sensor based on a boronate affinity molecular imprinting technique and functionalized SiO2@ CQDs/AuNPs/MPBA nanocomposites for sensitive determination of alpha-fetoprotein. Biosens Bioelectron. 2019;126:558–64.

    Article  Google Scholar 

  107. Chen W, Fang X, Li H, Cao H, Kong J. DNA-mediated inhibition of peroxidase-like activities on platinum nanoparticles for simple and rapid colorimetric detection of nucleic acids. Biosens Bioelectron. 2017;94:169–75.

    Article  Google Scholar 

  108. Zhang B, Zhao S, Wan H, Liu Y, Zhang F, Guo X, et al. High-resolution DNA size enrichment using a magnetic nano-platform and application in non-invasive prenatal testing. Analyst. 2020;145(17):5733–9.

    Article  Google Scholar 

  109. Sui Y, Wu F, Li H, Li L, Hou X, Du Z, et al. Enrichment and identification of fetal nucleated red blood cells from maternal blood with magnetic nanoparticles and quantum dots. Nanosci Nanotechnol Lett. 2019;11(1):38–46.

    Article  Google Scholar 

  110. Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green ML. Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry–A European Journal. 2003;9(16):3732–9

  111. Wang J. Carbon‐nanotube based electrochemical biosensors: A review. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 2005;17(1):7–14.

  112. Teixeira S, Conlan RS, Guy O, Sales MGF. Novel single-wall carbon nanotube screen-printed electrode as an immunosensor for human chorionic gonadotropin. Electrochim Acta. 2014;136:323–9.

    Article  Google Scholar 

  113. Tang J, Huang J, Su B, Chen H, Tang D. Sandwich-type conductometric immunoassay of alpha-fetoprotein in human serum using carbon nanoparticles as labels. Biochem Eng J. 2011;53(2):223–8.

    Article  Google Scholar 

  114. Xu T, Chi B, Gao J, Chu M, Fan W, Yi M, et al. Novel electrochemical immune sensor based on Hep-PGA-PPy nanoparticles for detection of α-Fetoprotein in whole blood. Anal Chim Acta. 2017;977:36–43.

    Article  Google Scholar 

  115. Wei X, Cai B, Chen K, Cheng L, Zhu Y, Wang Z, et al. Enhanced isolation and release of fetal nucleated red blood cells using multifunctional nanoparticle-based microfluidic device for non-invasive prenatal diagnostics. Sens Actuators, B Chem. 2019;281:131–8.

    Article  Google Scholar 

  116. U Kökbaş AT, L Kayrın. Genosensor Study for Fetal Cell-Free DNA Detection. American Journal of Biomedical Science & Research. 2020;8(1):23–6. https://doi.org/10.34297/AJBSR.2020.08.001228.

  117. Pös O, Budiš J, Szemes T. Recent trends in prenatal genetic screening and testing. F1000Research. 2019;8.

  118. Huang C-E, Ma G-C, Jou H-J, Lin W-H, Lee D-J, Lin Y-S, et al. Noninvasive prenatal diagnosis of fetal aneuploidy by circulating fetal nucleated red blood cells and extravillous trophoblasts using silicon-based nanostructured microfluidics. Mol Cytogenet. 2017;10(1):44.

    Article  Google Scholar 

  119. Wald NJ, Watt HC, Hackshaw AK. Integrated screening for down’s syndrome based on tests performed during the first and second trimesters. N Engl J Med. 1999;341(7):461–7. https://doi.org/10.1056/NEJM199908123410701.

    Article  Google Scholar 

  120. Yates CL, Monaghan KG, Copenheaver D, Retterer K, Scuffins J, Kucera CR, et al. Whole-exome sequencing on deceased fetuses with ultrasound anomalies: expanding our knowledge of genetic disease during fetal development. Genet Med. 2017;19(10):1171–8. https://doi.org/10.1038/gim.2017.31.

    Article  Google Scholar 

  121. Dashe JS, Twickler DM, Santos-Ramos R, McIntire DD, Ramus RM. Alpha-fetoprotein detection of neural tube defects and the impact of standard ultrasound. Am J Obstet Gynecol. 2006;195(6):1623–8.

    Article  Google Scholar 

  122. Shen G, He P, Du Y, Zhang S. Identification of biomarkers by proteomics for prenatal screening for neural tube defects. Tohoku J Exp Med. 2016;238(2):123–9.

    Article  Google Scholar 

  123. Chen L, Gu H, Li J, Yang Z-Y, Sun X, Zhang L, et al. Comprehensive maternal serum proteomics identifies the cytoskeletal proteins as non-invasive biomarkers in prenatal diagnosis of congenital heart defects. Sci Rep. 2016;6:19248.

    Article  Google Scholar 

  124. Lim JH, Kim SY, Kim HJ, Kim KS, Han YJ, Kim MH, et al. MicroRNAs as potential biomarkers for noninvasive detection of fetal trisomy 21. J Assist Reprod Genet. 2015;32(5):827–37.

    Article  Google Scholar 

  125. Khoshgoo N, Visser R, Falk L, Day CA, Ameis D, Iwasiow BM, et al. MicroRNA-200b regulates distal airway development by maintaining epithelial integrity. Sci Rep. 2017;7(1):6382.

    Article  Google Scholar 

  126. Szafranski P, Dharmadhikari AV, Brosens E, Gurha P, Koodziejska KE, Zhishuo O, et al. Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res. 2013;23(1):23–33.

    Article  Google Scholar 

  127. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design and writing. The initial draft of the manuscript was written mostly by S.S. Sadeghi and B. Ostad Hasanzadeh and M. Rahaie commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahdi Rahaie.

Ethics declarations

Conflict of interest

S. Sadeghi declares that she has no conflict of interest. M. Rahaie declares that he has no conflict of interest. B. Ostad Hasanzadeh declares that she has no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, S., Rahaie, M. & Ostad-Hasanzadeh, B. Nanostructures in non-invasive prenatal genetic screening. Biomed. Eng. Lett. 12, 3–18 (2022). https://doi.org/10.1007/s13534-021-00208-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-021-00208-6

Keywords

Navigation