Skip to main content
Log in

Molecular features unique to glioblastoma radiation resistant residual cells may affect patient outcome - a short report

  • Report
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Previously we have shown, using a primary glioblastoma (GBM) cell model, that a subpopulation of innately radiation resistant (RR) GBM cells survive radiotherapy and form multinucleated and giant cells (MNGCs) by homotypic fusions. We also showed that MNGCs may cause relapse. Here, we set out to explore whether molecular characteristics of RR cells captured from patient-derived primary GBM cultures bear clinical relevance.

Methods

Primary cultures were derived from 19 naive GBM tumor samples. RR cells generated from these cultures were characterized using various cell biological assays. We also collected clinicopathological data of the 19 patients and assessed associations with RR variables using Spearman’s correlation test and with patient survival using Kaplan-Meier analysis. Significance was determined using a log-rank test.

Results

We found that SF2 (surviving fraction 2) values (p = 0.029), days of RR cell formation (p = 0.019) and percentage of giant cells (p = 0.034) in the RR population independently correlated with a poor patient survival. We also found that low ATM (Ataxia-telangiectasia mutated) expression levels in RR cells showed a significant (p = 0.002) negative correlation with SF2 values. A low ATM expression level in RR cells along with a high tumor volume was also found to negatively correlate with patient survival (p = 0.011). Finally, we found that the ATM expression levels in RR cells independently correlated with a poor patient survival (p = 0.014).

Conclusions

Our data indicate that molecular features of innately radiation resistant GBM cells independently correlate with clinical outcome. Our study also highlights the relevance of using patient-derived primary GBM cultures for the characterization of RR cells that are otherwise inaccessible for analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Molecular features used in this study.
Fig. 2: ATM protein levels and its signaling in GBM tissues and primary cultures, and correlation analyses of molecular parameters among each other.
Fig. 3: Univariate analyses of the individual molecular and radio-pathological features on overall survival.

References

  1. P.Y. Wen, S. Kesari, Malignant gliomas in adults. N Engl J Med 359, 492–507 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. L.M. DeAngelis, Brain tumors. N Engl J Med 344, 114–123 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. F.B. Furnari, T. Fenton, R.M. Bachoo, A. Mukasa, J.M. Stommel, A. Stegh, W.C. Hahn, K.L. Ligon, D.N. Louis, C. Brennan, L. Chin, R.A. DePinho, W.K. Cavenee, Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21, 2683–2710 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. E.M. Ahmed, G. Bandopadhyay, B. Coyle, A. Grabowska, A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells. Cell Oncol 41, 319–328 (2018)

    Article  CAS  Google Scholar 

  5. L.M. Nusblat, M.J. Carroll, C.M. Roth, Crosstalk between M2 macrophages and glioma stem cells. Cell Oncol 40, 471–482 (2017)

    Article  CAS  Google Scholar 

  6. E. Kaur, J. Rajendra, S. Jadhav, E. Shridhar, J.S. Goda, A. Moiyadi, S. Dutt, Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence. Carcinogenesis 36, 685–695 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. A.G. Douglas-Jones, W.T. Barr, Breast carcinoma with tumor giant cells. Report of a case with fine needle aspiration cytology. Acta Cytol 33, 109–114 (1989)

    CAS  PubMed  Google Scholar 

  8. M.A. Jones, R.H. Young, R.E. Scully, Endometrial adenocarcinoma with a component of giant cell carcinoma. Int J Gynecol Pathol 10, 260–270 (1991)

    Article  CAS  PubMed  Google Scholar 

  9. H. Kawano, T. Kubota, K. Sato, T. Goya, S. Arikawa, S. Wakisaka, Immunohistochemical study of giant cell in glioblastoma. Clin Neuropathol 14, 118–123 (1995)

    CAS  PubMed  Google Scholar 

  10. A.V. Parwani, M. Herawi, J.I. Epstein, Pleomorphic giant cell adenocarcinoma of the prostate: report of 6 cases. Am J Surg Pathol 30, 1254–1259 (2006)

    Article  PubMed  Google Scholar 

  11. D.N. Louis, H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, P. Kleihues, The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114, 97–109 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  12. N.A. Franken, H.M. Rodermond, J. Stap, J. Haveman, C. van Bree, Clonogenic assay of cells in vitro. Nat Protoc 1, 2315–2319 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. S. Salunkhe, S.V. Mishra, J. Nair, S. Ghosh, N. Choudhary, E. Kaur, S. Shah, K. Patkar, D. Anand, N. Khattry, S.K. Hasan, S. Dutt, Inhibition of novel GCN5-ATM axis restricts the onset of acquired drug resistance in leukemia. Int J Cancer 142, 2175–2185 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. F. Varghese, A.B. Bukhari, R. Malhotra, A. De, IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One 9, e96801 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Zhang, I. Mercado-Uribe, Z. Xing, B. Sun, J. Kuang, J. Liu, Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33, 116–128 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. X. Lu, Y. Kang, Cell fusion as a hidden force in tumor progression. Cancer Res 69, 8536–8539 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D. Bastida-Ruiz, K. Van Hoesen, M. Cohen, The dark side of cell fusion. Int J Mol Sci 17, 638 (2016)

    Article  CAS  PubMed Central  Google Scholar 

  18. J. Bartek, J. Lukas, Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. K.A. Nyberg, R.J. Michelson, C.W. Putnam, T.A. Weinert, Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36, 617–656 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. S. Angèle, I. Treilleux, P. Tanière, G. Martel-Planche, M. Vuillaume, C. Bailly, A. Brémond, R. Montesano, J. Hall, Abnormal expression of the ATM and TP53 genes in sporadic breast carcinomas. Clin Cancer Res 6, 3536–3544 (2000)

    PubMed  Google Scholar 

  21. T.M.A. Abdel-Fatah, A. Arora, N. Alsubhi, D. Agarwal, P.M. Moseley, C. Perry, R. Doherty, S.Y.T. Chan, A.R. Green, E. Rakha, G. Ball, I.O. Ellis, S. Madhusudan, Clinicopathological significance of ATM-Chk2 expression in sporadic breast cancers: a comprehensive analysis in large cohorts. Neoplasia 16, 982–991 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. Squatrito, C.W. Brennan, K. Helmy, J.T. Huse, J.H. Petrini, E.C. Holland, Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18, 619–629 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. F.M. Uckun, W. Jaszcz, M. Chandan-Langlie, K.G. Waddick, K. Gajl-Peczalska, C.W. Song, Intrinsic radiation resistance of primary clonogenic blasts from children with newly diagnosed B-cell precursor acute lymphoblastic leukemia. J Clin Invest 91, 1044–1051 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Q. Matthews, A. Jirasek, J.J. Lum, A.G. Brolo, Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy. Phys Med Biol 56, 6839–6855 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. S. Tribius, A. Pidel, D. Casper, ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture. Int J Radiat Oncol Biol Phys 50, 511–523 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. S. Knappskog, R. Chrisanthar, E. Lokkevik, G. Anker, B. Ostenstad, S. Lundgren, T. Risberg, I. Mjaaland, B. Leirvaag, H. Miletic, P.E. Lonning, Low expression levels of ATM may substitute for CHEK2 /TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer. Breast Cancer Res 14, R47 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H. Jiang, H.C. Reinhardt, J. Bartkova, J. Tommiska, C. Blomqvist, H. Nevanlinna, J. Bartek, M.B. Yaffe, M.T. Hemann, The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23, 1895–1909 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. I. Dokic, A. Mairani, S. Brons, B. Schoell, A. Jauch, D. Krunic, J. Debus, A. Régnier-Vigouroux, K. Weber, High resistance to X-rays and therapeutic carbon ions in glioblastoma cells bearing dysfunctional ATM associates with intrinsic chromosomal instability. Int J Radiat Biol 91, 157–165 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. M.A. Haidar, H. Kantarjian, T. Manshouri, C.Y. Chang, S. O'Brien, E. Freireich, M. Keating, M. Albitar, ATM gene deletion in patients with adult acute lymphoblastic leukemia. Cancer 88, 1057–1062 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. L. Ripolles, M. Ortega, F. Ortuno, A. Gonzalez, J. Losada, J. Ojanguren, J.A. Soler, J. Bergua, M.D. Coll, M.R. Caballin, Genetic abnormalities and clinical outcome in chronic lymphocytic leukemia. Cancer Genet Cytogenet 171, 57–64 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. B. Austen, A. Skowronska, C. Baker, J.E. Powell, A. Gardiner, D. Oscier, A. Majid, M. Dyer, R. Siebert, A.M. Taylor, P.A. Moss, T. Stankovic, Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 25, 5448–5457 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. S. Rondeau, S. Vacher, L. De Koning, A. Briaux, A. Schnitzler, W. Chemlali, C. Callens, R. Lidereau, I. Bièche, ATM has a major role in the double-strand break repair pathway dysregulation in sporadic breast carcinomas and is an independent prognostic marker at both mRNA and protein levels. Br J Cancer 112, 1059–1066 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. N.S. Shabb, A. Tawil, F. Gergeos, M. Saleh, S. Azar, Multinucleated giant cells in fine-needle aspiration of thyroid nodules: Their diagnostic significance. Diagn Cytopathol 21, 307–312 (1999)

    Article  CAS  PubMed  Google Scholar 

  34. I. Kern, P. Kecelj, M. Kosnik, M. Mermolja, Multinucleated giant cells in bronchoalveolar lavage. Acta Cytol 47, 426–430 (2003)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Sadhana Kannan for help with statistical analysis and to Prof. B. J. Rao, TIFR, for providing the anti-ATM antibody. AG acknowledges DST-SERB, India for providing a National Post-Doctoral Fellowship (PDF/2016/00158), and SS acknowledges CSIR for providing a fellowship.

Funding

This study is supported by a Department of Biotechnology grant (BT/PR4020/MED/30/792/2012) to SD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpee Dutt.

Ethics declarations

Competing interests

None declared.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Tata Memorial Centre institutional ethics committee (TMC-IEC III: - ECR/149/Inst/MH/2013) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, E., Goda, J.S., Ghorai, A. et al. Molecular features unique to glioblastoma radiation resistant residual cells may affect patient outcome - a short report. Cell Oncol. 42, 107–116 (2019). https://doi.org/10.1007/s13402-018-0411-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-018-0411-7

Keywords

Navigation