Skip to main content

Advertisement

Log in

Anti-tumor effect of CDK inhibitors on CDKN2A-defective squamous cell lung cancer cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Squamous cell lung cancer (SqCLC) is a distinct histologic subtype of non-small cell lung cancer (NSCLC). Although the discovery of driver mutations and their targeted drugs has remarkably improved the treatment outcomes for lung adenocarcinoma, currently no such molecular target is clinically available for SqCLC. The CDKN2A locus at 9p21 encodes two alternatively spliced proteins, p16INK4a (p16) and p14ARF (p14), which function as cell cycle inhibitors. The Cancer Genome Atlas (TCGA) project revealed that CDKN2A is inactivated in 72% of SqCLC cases. In addition, it was found that CDKN2A mutations are significantly more common in SqCLC than in adenocarcinoma. Down-regulation of p16 and p14 by CDKN2A gene inactivation leads to activation of cyclin-dependent kinases (CDKs), thereby permitting constitutive phosphorylation of Rb and subsequent cell cycle progression. Here, we hypothesized that CDK inhibition may serve as an attractive strategy for the treatment of CDKN2A-defective SqCLC.

Methods

We investigated whether the CDK inhibitors flavopiridol and dinaciclib may exhibit antitumor activity in CDKN2A-defective SqCLC cells compared to control cells. The cytotoxic effect of the CDK inhibitors was evaluated using cell viability assays, and the induction of apoptosis was assessed using TUNEL assays and Western blot analyses. Finally, anti-tumor effects of the CDK inhibitors on xenografted cells were investigated in vivo.

Results

We found that flavopiridol and dinaciclib induced cytotoxicity by enhancing apoptosis in CDKN2A-defective SqCLC cells, and that epithelial to mesenchymal transition (EMT) decreased and autophagy increased during this process. In addition, we found that autophagy had a cytoprotective role.

Conclusion

Our data suggest a potential role of CDK inhibitors in managing CDKN2A-defective SqCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.D. Travis, Pathology of lung cancer. Clin. Chest Med. 32, 669–692 (2011)

    Article  Google Scholar 

  2. C.J. Langer, C. Obasaju, P. Bunn, P. Bonomi, D. Gandara, F.R. Hirsch, E.S. Kim, R.B. Natale, S. Novello, L. Paz-Ares, M. Perol, M. Reck, S.S. Ramalingam, C.H. Reynolds, M.A. Socinski, D.R. Spigel, H. Wakelee, C. Mayo, N. Thatcher, Incremental innovation and progress in advanced squamous cell lung cancer: Current status and future impact of treatment. J. Thorac. Oncol. 11, 2066–2081 (2016)

    Article  Google Scholar 

  3. M.A. Socinski, C. Obasaju, D. Gandara, F.R. Hirsch, P. Bonomi, P.A. Bunn Jr., E.S. Kim, C.J. Langer, R.B. Natale, S. Novello, L. Paz-Ares, M. Perol, M. Reck, S.S. Ramalingam, C.H. Reynolds, D.R. Spigel, H. Wakelee, N. Thatcher, Current and emergent therapy options for advanced squamous cell lung cancer. J. Thorac. Oncol. 13, 165–183 (2018)

    Article  Google Scholar 

  4. F.R. Hirsch, G.V. Scagliotti, J.L. Mulshine, R. Kwon, W.J. Curran, Jr., Y.L. Wu, L. Paz-Ares, Lung cancer: Current therapies and new targeted treatments. Lancet 389, 299–311 (2017)

    Article  CAS  Google Scholar 

  5. M. Reck, K.F. Rabe, Precision diagnosis and treatment for advanced non-small-cell lung cancer. N. Engl. J. Med. 377, 849–861 (2017)

    Article  CAS  Google Scholar 

  6. A. Thomas, S.V. Liu, D.S. Subramaniam, G. Giaccone, Refining the treatment of NSCLC according to histological and molecular subtypes. Nat. Rev. Clin. Oncol. 12, 511–526 (2015)

    Article  CAS  Google Scholar 

  7. M. Ruas, G. Peters, The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta 1378, F115–F177 (1998)

    CAS  PubMed  Google Scholar 

  8. N.E. Sharpless, INK4a/ARF: A multifunctional tumor suppressor locus. Mutat. Res. 576, 22–38 (2005)

    Article  CAS  Google Scholar 

  9. A. Pacifico, G. Leone, Role of p53 and CDKN2A inactivation in human squamous cell carcinomas. J. Biomed. Biotechnol. 2007, 43418 (2007)

  10. R. Zhao, B.Y. Choi, M.H. Lee, A.M. Bode, Z. Dong, Implications of genetic and epigenetic alterations of CDKN2A (p16(INK4a)) in cancer. EBioMedicine 8, 30–39 (2016)

    Article  Google Scholar 

  11. F.J. Stott, S. Bates, M.C. James, B.B. McConnell, M. Starborg, S. Brookes, I. Palmero, K. Ryan, E. Hara, K.H. Vousden, G. Peters, The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998)

    Article  CAS  Google Scholar 

  12. M. Serrano, H. Lee, L. Chin, C. Cordon-Cardo, D. Beach, R.A. DePinho, Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996)

    Article  CAS  Google Scholar 

  13. Cancer Genome Atlas Research Network, Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012)

    Article  Google Scholar 

  14. Cancer Genome Atlas Research Network, Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014)

    Article  Google Scholar 

  15. G.I. Shapiro, Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 24, 1770–1783 (2006)

    Article  CAS  Google Scholar 

  16. T. VanArsdale, C. Boshoff, K.T. Arndt, R.T. Abraham, Molecular pathways: Targeting the cyclin D-CDK4/6 axis for cancer treatment. Clin. Cancer Res. 21, 2905–2910 (2015)

    Article  CAS  Google Scholar 

  17. D. Parry, T. Guzi, F. Shanahan, N. Davis, D. Prabhavalkar, D. Wiswell, W. Seghezzi, K. Paruch, M.P. Dwyer, R. Doll, A. Nomeir, W. Windsor, T. Fischmann, Y. Wang, M. Oft, T. Chen, P. Kirschmeier, E.M. Lees, Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol. Cancer Ther. 9, 2344–2353 (2010)

    Article  CAS  Google Scholar 

  18. M.M. Al-Ansari, S.F. Hendrayani, A. Tulbah, T. Al-Tweigeri, A.I. Shehata, A. Aboussekhra, p16INK4A represses breast stromal fibroblasts migration/invasion and their VEGF-a-dependent promotion of angiogenesis through Akt inhibition. Neoplasia 14, 1269–1277 (2012)

    Article  CAS  Google Scholar 

  19. M.M. Al-Ansari, S.F. Hendrayani, A.I. Shehata, A. Aboussekhra, p16(INK4A) represses the paracrine tumor-promoting effects of breast stromal fibroblasts. Oncogene 32, 2356–2364 (2013)

    Article  CAS  Google Scholar 

  20. C. Umbreit, J. Flanjak, C. Weiss, P. Erben, C. Aderhold, A. Faber, J. Stern-Straeter, K. Hoermann, J.D. Schultz, Incomplete epithelial-mesenchymal transition in p16-positive squamous cell carcinoma cells correlates with beta-catenin expression. Anticancer Res. 34, 7061–7069 (2014)

    CAS  PubMed  Google Scholar 

  21. A. Scott, F. Bai, H.L. Chan, S. Liu, J. Ma, J.M. Slingerland, D.J. Robbins, A.J. Capobianco, X.H. Pei, p16INK4a suppresses BRCA1-deficient mammary tumorigenesis. Oncotarget 7, 84496–84507 (2016)

    PubMed  PubMed Central  Google Scholar 

  22. H.H. Al-Khalaf, A. Aboussekhra, p16(INK4A) induces senescence and inhibits EMT through microRNA-141/microRNA-146b-5p-dependent repression of AUF1. Mol. Carcinog. 56, 985–999 (2017)

    Article  CAS  Google Scholar 

  23. S. Lamouille, J. Xu, R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014)

    Article  CAS  Google Scholar 

  24. D.J. Klionsky, S.D. Emr, Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721 (2000)

    Article  CAS  Google Scholar 

  25. B. Levine, Cell biology: Autophagy and cancer. Nature 446, 745–747 (2007)

    Article  CAS  Google Scholar 

  26. J. Pimkina, O. Humbey, J.T. Zilfou, M. Jarnik, M.E. Murphy, ARF induces autophagy by virtue of interaction with Bcl-xl. J. Biol. Chem. 284, 2803–2810 (2009)

    Article  CAS  Google Scholar 

  27. H. Jiang, V. Martin, C. Gomez-Manzano, D.G. Johnson, M. Alonso, E. White, J. Xu, T.J. McDonnell, N. Shinojima, J. Fueyo, The RB-E2F1 pathway regulates autophagy. Cancer Res. 70, 7882–7893 (2010)

    Article  CAS  Google Scholar 

  28. C. Capparelli, B. Chiavarina, D. Whitaker-Menezes, T.G. Pestell, R.G. Pestell, J. Hulit, S. Ando, A. Howell, U.E. Martinez-Outschoorn, F. Sotgia, M.P. Lisanti, CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle 11, 3599–3610 (2012)

    Article  CAS  Google Scholar 

  29. N. Mizushima, T. Yoshimori, B. Levine, Methods in mammalian autophagy research. Cell 140, 313–326 (2010)

    Article  CAS  Google Scholar 

  30. G. Das, B.V. Shravage, E.H. Baehrecke, Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol. 4 (2012)

    Article  Google Scholar 

  31. D.A. Gewirtz, The four faces of autophagy: Implications for cancer therapy. Cancer Res. 74, 647–651 (2014)

    Article  CAS  Google Scholar 

  32. M. Yousefi, T. Bahrami, A. Salmaninejad, R. Nosrati, P. Ghaffari, S.H. Ghaffari, Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell. Oncol. 40, 419–441 (2017)

    Article  CAS  Google Scholar 

  33. D.R. Gandara, P.S. Hammerman, M.L. Sos, P.N. Lara Jr., F.R. Hirsch, Squamous cell lung cancer: From tumor genomics to cancer therapeutics. Clin. Cancer Res. 21, 2236–2243 (2015)

    Article  CAS  Google Scholar 

  34. Z. Lou-Qian, Y. Rong, L. Ming, Y. Xin, J. Feng, X. Lin, The prognostic value of epigenetic silencing of p16 gene in NSCLC patients: A systematic review and meta-analysis. PLoS One 8, e54970 (2013)

    Article  Google Scholar 

  35. X.B. Xing, W.B. Cai, L. Luo, L.S. Liu, H.J. Shi, M.H. Chen, The prognostic value of p16 hypermethylation in cancer: A meta-analysis. PLoS One 8, e66587 (2013)

    Article  CAS  Google Scholar 

  36. M. Malumbres, M. Barbacid, To cycle or not to cycle: A critical decision in cancer. Nat. Rev. Cancer 1, 222–231 (2001)

    Article  CAS  Google Scholar 

  37. M. Malumbres, M. Barbacid, Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009)

    Article  CAS  Google Scholar 

  38. C. Criscitiello, G. Viale, A. Esposito, G. Curigliano, Dinaciclib for the treatment of breast cancer. Expert Opin. Investig. Drugs 23, 1305–1312 (2014)

    Article  CAS  Google Scholar 

  39. J. Flynn, J. Jones, A.J. Johnson, L. Andritsos, K. Maddocks, S. Jaglowski, J. Hessler, M.R. Grever, E. Im, H. Zhou, Y. Zhu, D. Zhang, K. Small, R. Bannerji, J.C. Byrd, Dinaciclib is a novel cyclin-dependent kinase inhibitor with significant clinical activity in relapsed and refractory chronic lymphocytic leukemia. Leukemia 29, 1524–1529 (2015)

    Article  CAS  Google Scholar 

  40. C. Abdullah, X. Wang, D. Becker, Expression analysis and molecular targeting of cyclin-dependent kinases in advanced melanoma. Cell Cycle 10, 977–988 (2011)

    Article  CAS  Google Scholar 

  41. C. Hu, T. Dadon, V. Chenna, S. Yabuuchi, R. Bannerji, R. Booher, P. Strack, N. Azad, B.D. Nelkin, A. Maitra, Combined inhibition of cyclin-dependent kinases (dinaciclib) and AKT (MK-2206) blocks pancreatic tumor growth and metastases in patient-derived xenograft models. Mol. Cancer Ther. 14, 1532–1539 (2015)

    Article  CAS  Google Scholar 

  42. A. Stone, R.L. Sutherland, E.A. Musgrove, Inhibitors of cell cycle kinases: Recent advances and future prospects as cancer therapeutics. Crit. Rev. Oncog. 17, 175–198 (2012)

    Article  Google Scholar 

  43. P.J. Roberts, J.E. Bisi, J.C. Strum, A.J. Combest, D.B. Darr, J.E. Usary, W.C. Zamboni, K.K. Wong, C.M. Perou, N.E. Sharpless, Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. J. Natl. Cancer Inst. 104, 476–487 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by Ministry of Science and ICT (MSIT), Republic of Korea (50474-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Hyeon Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, EH., Lee, TG., Ko, Y.J. et al. Anti-tumor effect of CDK inhibitors on CDKN2A-defective squamous cell lung cancer cells. Cell Oncol. 41, 663–675 (2018). https://doi.org/10.1007/s13402-018-0404-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-018-0404-6

Keywords

Navigation