Skip to main content

Advertisement

Log in

Prognostic value of cytokeratin-7 mRNA expression in peripheral whole blood of advanced lung adenocarcinoma patients

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

The rarity of circulating tumour cells (CTCs) in peripheral blood requires the application of sensitive techniques for their detection. The aim of our study was to (i) first determine the sensitivity of cytokeratin-7 (KRT7) mRNA expression levels for the molecular detection of CTCs using spiked-in lung adenocarcinoma (AC)-derived A549 cells and (ii) evaluate the impact of KRT7 mRNA expression in peripheral whole blood on the response to treatment and prognosis of patients with advanced lung AC who were treated with first-line platinum-based chemotherapy.

Methods

A549 cells were micro-manipulated before being spiked into whole blood samples obtained from healthy donors. Additionally, whole blood samples from 65 lung AC patients were collected in PAXgene blood tubes before the start of first-line platinum-based chemotherapy. KRT7 mRNA expression was measured using RT-qPCR.

Results

Through the spike-in experiment we found that it is feasible to detect a single A549 tumour cell in 2.5 ml whole blood and that the KRT7 mRNA levels were linearly correlated with the number of spiked-in tumour cells with a high reproducibility. In lung AC patients, no significant differences in response rate to chemotherapy, progression-free survival or overall survival and KRT7 mRNA levels were found.

Conclusions

Our data show that KRT7 mRNA expression measured by RT-qPCR serves as a sensitive approach for the molecular detection of KRT7-positive CTC-resembling A549 cells in peripheral whole blood. The KRT7 mRNA levels measured were not significantly associated with the response to chemotherapy or the survival of patients with advanced lung AC. Additional studies are required to establish the possible clinical significance of KRT7 mRNA expression in whole blood after chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Ferlay, I. Soerjomataram, M. Ervik, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, F. Bray, in GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide. IARC CancerBase No. 11 [Internet]. Lyon, International Agency for Research on Cancer. http://globocan.iarc.fr Accessed 16 November 2014

  2. N. Peled, M.W. Wynes, N. Ikeda, T. Ohira, K. Yoshida, J. Qian, M. Ilouze, R. Brenner, Y. Kato, C. Mascaux, F.R. Hirsch, Insulin-like growth factor-1 receptor (IGF-1R) as a biomarker for resistance to the tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. Cell. Oncol. 36, 277–88 (2013)

    Article  CAS  Google Scholar 

  3. S.H. Ahn, E.H. Jeong, T.G. Lee, S.Y. Kim, H.R. Kim, C.H. Kim, Gefitinib induces cytoplasmic translocation of the CDK inhibitor p27 and its binding to a cleaved intermediate of caspase 8 in non-small cell lung cancer cells. Cell. Oncol. 37, 377–386 (2014)

    Article  CAS  Google Scholar 

  4. P. Ulivi, R. Silvestrini, Role of quantitative and qualitative characteristics of free circulating DNA in the management of patients with non-small cell lung cancer. Cell. Oncol. 36, 439–448 (2013)

    Article  CAS  Google Scholar 

  5. L.G. Collins, C. Haines, R. Perkel, R.E. Enck, Lung cancer: diagnosis and management. Am. Fam. Physician 75, 56–63 (2007)

    PubMed  Google Scholar 

  6. T. Cufer, L. Knez, Update on systemic therapy of advanced non-small-cell lung cancer. Expert Rev. Anticancer Ther. 14, 1189–1203 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. B. Kubuschok, B. Passlick, J.R. Izbicki, O. Thetter, K. Pantel, Disseminated tumor cells in lymph nodes as a determinant for survival in surgically resected non-small-cell lung cancer. J. Clin. Oncol. 17, 19–24 (1999)

    CAS  PubMed  Google Scholar 

  8. V. Hofman, C. Bonnetaud, M.I. Ilie, P. Vielh, J.M. Vignaud, J.F. Fléjou, S. Lantuejoul, E. Piaton, N. Mourad, C. Butori, E. Selva, M. Poudenx, S. Sibon, S. Kelhef, N. Vénissac, J.P. Jais, J. Mouroux, T.J. Molina, P. Hofman, Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin. Cancer Res. 17, 827–835 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. M.G. Krebs, J.M. Hou, R. Sloane, L. Lancashire, L. Priest, D. Nonaka, T.H. Ward, A. Backen, G. Clack, A. Hughes, M. Ranson, F.H. Blackhall, C. Dive, Analysis of circulating tumor cells in patients with non-small cell lung cancer using epithelial marker-dependent and -independent approaches. J. Thorac. Oncol. 7, 306–315 (2012)

    Article  PubMed  Google Scholar 

  10. T.J.N. Hiltermann, M.M. Pore, A. van den Berg, W. Timens, H.M. Boezen, J.J. Liesker, J.H. Schouwink, W.J. Wijnands, G.S. Kerner, F.A. Kruyt, H. Tissing, A.G. Tibbe, L.W. Terstappen, H.J. Groen, Circulating tumor cells in small-cell lung cancer: a predictive and prognostic factor. Ann. Oncol. 23, 2937–2942 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. W.J. Allard, J. Matera, M.C. Miller, M. Repollet, M.C. Connelly, C. Rao, A.G. Tibbe, J.W. Uhr, L.W. Terstappen, Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004)

    Article  PubMed  Google Scholar 

  12. M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, J. Matera, M.C. Miller, J.M. Reuben, G.V. Doyle, W.J. Allard, L.W. Terstappen, D.F. Hayes, Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. E.A. Punnoose, S. Atwal, W. Liu, R. Raja, B.M. Fine, B.G. Hughes, R.J. Hicks, G.M. Hampton, L.C. Amler, A. Pirzkall, M.R. Lackner, Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: Association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin. Cancer Res. 18, 2391–2401 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. O. Hoffmann, E. Solomayer, S. Kuemmel, M. Hahn, S. Kasimir-Bauer, R. Kimmig, D. Wallwiener, T. Fehm, Does primary systemic therapy erradicate disseminated and circulating tumor cells? Cancer Res. 69, 3001–3001 (2009)

    Article  Google Scholar 

  15. L.H. Broersen, G.W. van Pelt, R.A.E.M. Tollenaar, W.E. Mesker, Clinical application of circulating tumor cells in breast cancer. Cell. Oncol. 37, 9–15 (2014)

    Article  CAS  Google Scholar 

  16. M.J. Kim, N.Y. Choi, E.K. Lee, M.S. Kang, Identification of novel markers that outperform EpCAM in quantifying circulating tumor cells. Cell. Oncol. 37, 235–243 (2014)

    Article  CAS  Google Scholar 

  17. G. Vona, A. Sabile, M. Louha, V. Sitruk, S. Romana, K. Schütze, F. Capron, D. Franco, M. Pazzagli, M. Vekemans, B. Lacour, C. Bréchot, P. Paterlini-Bréchot, Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am. J. Pathol. 156, 57–63 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. R.T. Krivacic, A. Ladanyi, D.N. Curry, H.B. Hsieh, P. Kuhn, D.E. Bergsrud, J.F. Kepros, T. Barbera, M.Y. Ho, L.B. Chen, R.A. Lerner, R.H. Bruce, A rare-cell detector for cancer. Proc. Natl. Acad. Sci. U. S. A. 10, 10501–10504 (2004)

    Article  Google Scholar 

  20. T. Nolan, R.E. Hands, S.A. Austin, Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559–1582 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. L. Rainen, U. Oelmueller, S. Jurgensen, R. Wyrich, C. Ballas, J. Schram, C. Herdman, D. Bankaitis-Davis, N. Nicholls, D. Trollinger, V. Tryon, Stabilization of mRNA expression in whole blood samples. Clin. Chem. 48, 1883–1890 (2002)

    CAS  PubMed  Google Scholar 

  22. A.E. Ring, L. Zabaglo, M.G. Ormerod, I.E. Smith, M. Dowsett, Detection of circulating epithelial cells in the blood of patients with breast cancer: comparison of three techniques. Br. J. Cancer 92, 906–912 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. R.A. Ghossein, S. Bhattacharya, R. Rosai, Molecular detection of micrometastases and circulating tumor cells in solid tumors. Clin. Cancer Res. 5, 1950–1960 (1999)

    CAS  PubMed  Google Scholar 

  24. N.B. Tsui, E.K. Ng, Y.M. Lo, Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem. 48, 1647–1653 (2002)

    CAS  PubMed  Google Scholar 

  25. E. Saloustros, M. Perraki, S. Apostolaki, G. Kallergi, A. Xyrafas, K. Kalbakis, S. Agelaki, A. Kalykaki, V. Georgoulias, D. Mavroudis, Cytokeratin-19 mRNA-positive circulating tumor cells during follow-up of patients with operable breast cancer: prognostic relevance for late relapse. Breast Cancer Res. 13, R60 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  26. P. Chu, E. Wu, L.M. Weiss, Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod. Pathol. 13, 962–972 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. D.C. Chhieng, J.F. Cangiarella, M.F. Zakowski, S. Goswami, J.M. Cohen, H.T. Yee, Use of thyroid transcription factor 1, PE-10, and cytokeratins 7 and 20 in discriminating between primary lung carcinomas and metastatic lesions in fine-needle aspiration biopsy specimens. Cancer Cytopathol. 93, 330–336 (2001)

    Article  CAS  Google Scholar 

  28. O. Arrieta, B. Pineda, S. Muñiz-Hernández, D. Flores, G. Ordóñez, J.R. Borbolla-Escoboza, D. Orta, Molecular detection and prognostic value of epithelial markers mRNA expression in peripheral blood of advanced non-small cell lung cancer patients. Cancer Biomark. 14, 215–223 (2014)

    CAS  PubMed  Google Scholar 

  29. D.G. Altman, L.M. McShane, W. Sauerbrei, S.E. Taube, Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): explanation and elaboration. PLoS Med. 9, e1001216 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  30. E.A. Eisenhauer, P. Therasse, J. Bogaerts, L.H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, J. Verweij, New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. M.M. Oken, R.H. Creech, D.C. Tormey, J. Horton, T.E. Davis, E.T. McFadden, P.P. Carbone, Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 5, 649–655 (1982)

    Article  CAS  PubMed  Google Scholar 

  32. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25, 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. I.H. Al-Zahrani, The value of immunohistochemical expression of TTF-1, CK7 and CK20 in the diagnosis of primary and secondary lung carcinomas. Saudi Med. J. 29, 957–961 (2008)

    PubMed  Google Scholar 

  34. S. Paget, The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 8, 98–101 (1989)

    CAS  PubMed  Google Scholar 

  35. Y. Liu, J. Qian, J.G. Feng, H.X. Ju, Y.P. Zhu, H.Y. Feng, D.C. Li, Detection of circulating tumor cells in peripheral blood of colorectal cancer patients without distant organ metastases. Cell. Oncol. 36, 43–53 (2013)

    Article  Google Scholar 

  36. J. Wang, J. Huang, K. Wang, J. Xu, J. Huang, T. Zhang, Prognostic significance of circulating tumor cells in non-small-cell lung cancer patients: a meta-analysis. PLoS One 8, e78070 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  37. E. Borgen, B. Naume, J.M. Nesland, G. Kvalheim, K. Beiske, O. Fodstad, I. Diel, E.F. Solomayer, P. Theocharous, R.C. Coombes, B.M. Smith, E. Wunder, J.P. Marolleau, J. Garcia, K. Pantel, Standardization of the immunocytochemical detection of cancer cells in BM and blood: I. establishment of objective criteria for the evaluation of immunostained cells. Cytotherapy 1, 377–388 (1999)

    Article  CAS  PubMed  Google Scholar 

  38. M.G. Krebs, R. Sloane, L. Priest, L. Lancashire, J. Hou, A. Greystoke, T.H. Ward, R. Ferraldeschi, A. Hughes, G. Clack, M. Ranson, C. Dive, F.H. Blackhall, Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 29, 1556–1563 (2011)

    Article  PubMed  Google Scholar 

  39. A. Stathopoulou, Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J. Clin. Oncol. 20, 3404–3412 (2002)

    Article  CAS  PubMed  Google Scholar 

  40. T.A. Masuda, A. Kataoka, S. Ohno, S. Murakami, K. Mimori, T. Utsunomiya, H. Inoue, S. Tsutsui, J. Kinoshita, N. Masuda, N. Moriyama, M. Mori, Detection of occult cancer cells in peripheral blood and bone marrow by quantitative RT-PCR assay for cytokeratin-7 in breast cancer patients. Int. J. Oncol. 26, 721–730 (2005)

    CAS  PubMed  Google Scholar 

  41. S.O. Yoon, Y.T. Kim, K.C. Jung, Y.K. Jeon, B.H. Kim, C.W. Kim, TTF-1 mRNA-positive circulating tumor cells in the peripheral blood predict poor prognosis in surgically resected non-small cell lung cancer patients. Lung Cancer 71, 209–216 (2011)

    Article  PubMed  Google Scholar 

  42. K. Peck, Y.P. Sher, J.Y. Shih, S.R. Roffler, C.W. Wu, P.C. Yang, Detection and quantitation of circulating cancer cells in the peripheral blood of lung cancer patients. Cancer Res. 58, 2761–2765 (1998)

    CAS  PubMed  Google Scholar 

  43. W.F. Zhu, J. Li, L.C. Yu, Y. Wu, X.P. Tang, Y.M. Hu, Y.C. Chen, Prognostic value of EpCAM/MUC1 mRNA-positive cells in non-small cell lung cancer patients. Tumor Biol. 35, 1211–1219 (2013)

    Article  Google Scholar 

  44. T.F. Chen, G.L. Jiang, X.L. Fu, L.J. Wang, H. Qian, K.L. Wu, S. Zhao, CK19 mRNA expression measured by reverse-transcription polymerase chain reaction (RT-PCR) in the peripheral blood of patients with non-small cell lung cancer treated by chemo-radiation: an independent prognostic factor. Lung Cancer 56, 105–114 (2007)

    Article  PubMed  Google Scholar 

  45. S.A. Joosse, J. Hannemann, J. Spötter, A. Bauche, A. Andreas, V. Müller, K. Pantel, Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. Clin. Cancer Res. 18, 993–1003 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. N. Xenidis, I. Vlachonikolis, D. Mavroudis, M. Perraki, A. Stathopoulou, N. Malamos, C. Kouroussis, S. Kakolyris, S. Apostolaki, N. Vardakis, E. Lianidou, V. Georgoulias, Peripheral blood circulating cytokeratin-19 mRNA-positive cells after the completion of adjuvant chemotherapy in patients with operable breast cancer. Ann. Oncol. 14, 849–855 (2003)

    Article  CAS  PubMed  Google Scholar 

  47. A.M. Sieuwerts, J. Kraan, J. Bolt-de Vries, P. van der Spoel, B. Mostert, J.W. Martens, J.W. Gratama, S. Sleijfer, J.A. Foekens, Molecular characterization of circulating tumor cells in large quantities of contaminating leukocytes by a multiplex real-time PCR. Breast Cancer Res. Treat. 118, 455–468 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. J.P. Thiery, J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131–142 (2006)

    Article  CAS  PubMed  Google Scholar 

  49. M. Perán, J.A. Marchal, M.A. García, J. Kenyon, D. Tosh, In vitro treatment of carcinoma cell lines with pancreatic (pro)enzymes suppresses the EMT programme and promotes cell differentiation. Cell. Oncol. 36, 289–301 (2013)

    Article  Google Scholar 

  50. A. Koren, H. Motaln, T. Cufer, Lung cancer stem cells: a biological and clinical perspective. Cell. Oncol. 36, 265–275 (2013)

    Article  CAS  Google Scholar 

  51. M. Sabbah, S. Emami, G. Redeuilh, S. Julien, G. Prévost, A. Zimber, R. Ouelaa, M. Bracke, O. De Wever, C. Gespach, Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist. Updat. 11, 123–151 (2008)

    Article  CAS  PubMed  Google Scholar 

  52. B. Willipinski-Stapelfeldt, S. Riethdorf, V. Assmann, U. Woelfle, T. Rau, G. Sauter, J. Heukeshoven, K. Pantel, Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin. Cancer Res. 11, 8006–8014 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. A.J. Armstrong, M.S. Marengo, S. Oltean, G. Kemeny, R.L. Bitting, J.D. Turnbull, C.I. Herold, P.K. Marcom, D.J. George, M.A. Garcia-Blanco, Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol. Cancer Res. 9, 997–1007 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. M. Yu, A. Bardia, B.S. Wittner, S.L. Stott, M.E. Smas, D.T. Ting, S.J. Isakoff, J.C. Ciciliano, M.N. Wells, A.M. Shah, K.F. Concannon, M.C. Donaldson, L.V. Sequist, E. Brachtel, D. Sgroi, J. Baselga, S. Ramaswamy, M. Toner, D.A. Haber, S. Maheswaran, Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. A. Lecharpentier, P. Vielh, P. Perez-Moreno, D. Planchard, J.C. Soria, F. Farace, Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br. J. Cancer 105, 1338–1341 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. A. Gradilone, C. Raimondi, C. Nicolazzo, A. Petracca, O. Gandini, B. Vincenzi, G. Naso, A.M. Aglianò, E. Cortesi, P. Gazzaniga, Circulating tumour cells lacking cytokeratin in breast cancer: the importance of being mesenchymal. J. Cell. Mol. Med. 15, 1066–1070 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Slovenian Research Agency Grant J3-4076.

Conflicts of interest

The authors declare they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Koren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koren, A., Sodja, E., Rijavec, M. et al. Prognostic value of cytokeratin-7 mRNA expression in peripheral whole blood of advanced lung adenocarcinoma patients. Cell Oncol. 38, 387–395 (2015). https://doi.org/10.1007/s13402-015-0238-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-015-0238-4

Keywords

Navigation