Skip to main content

Advertisement

Log in

Discovery of TP53 splice variants in two novel papillary urothelial cancer cell lines

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Using a novel cell culture technique, we established two new cell lines, BC44 and BC61, from papillary urothelial carcinoma and analyzed them for genetic changes typical of this tumor type.

Methods and results

Karyotyping revealed aneuploid karyotypes with loss of chromosome 9 and rearranged chromosome 5p. Molecular analysis showed CDKN2A deletions but wild-type PIK3CA. BC61 contained a G372C FGFR3 mutation. TP53 was not mutated in either cell line and BC61 expressed normal full-length protein. In contrast, BC44 exclusively expressed cytoplasmic and nuclear p53Δ40 and 133 isoforms from the alternative promoter P2 as revealed by Western blotting, immunocytochemistry and PCR. The only discernible difference in TP53 in BC44 was homozygosity for the deletion allele of the rs17878362 polymorphism in the P2 promoter. Expression of p53 isoforms was also detected in a few other urothelial carcinoma cell lines and tumor cultures and in 4 out of 28 carcinoma tissues.

Conclusion

In urothelial cancers, TP53 is typically inactivated by mutations in one allele and loss of the wildtype allele and more frequently in invasive compared to papillary carcinomas. We show that some urothelial carcinomas may predominantly or exclusively express isoforms which are not detected by commonly used antibodies to epitopes located in the p53 TA amino-terminal region. Expression of these isoforms may constitute a further mode of p53 inactivation in urothelial carcinoma. Our findings raise the question to which extent this mechanism may compromise wildtype p53 function in papillary tumors in particular, where point mutations in the gene are rare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.I. Epstein, Diagnosis and classification of flat, papillary, and invasive urothelial carcinoma: the WHO/ISUP consensus. Int. J. Surg. Pathol. 18, 106S–111S (2010)

    Article  PubMed  Google Scholar 

  2. W.A. Schulz, Understanding urothelial carcinoma through cancer pathways. Int. J. Cancer 119, 1513–1518 (2006)

    Article  PubMed  CAS  Google Scholar 

  3. G. Niegisch, A. Koch, J. Knievel, W.A. Schulz, P. Albers, Signal transduction in urothelial cancer : How exactly do we know the targets for targeted therapy?. Urologe A (2010)

  4. P.J. Goebell, M.A. Knowles, Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol. Oncol. 28, 409–428 (2010)

    Article  PubMed  Google Scholar 

  5. H.H. Seifert, A. Meyer, M.V. Cronauer, J. Hatina, M. Muller, H. Rieder, M.J. Hoffmann, R. Ackermann, W.A. Schulz, A new and reliable culture system for superficial low-grade urothelial carcinoma of the bladder. World J Urol. 25, 297–302 (2007)

    Article  PubMed  Google Scholar 

  6. M.P. Williamson, P.A. Elder, M.A. Knowles, The spectrum of TP53 mutations in bladder carcinoma. Genes Chromosomes Cancer 9, 108–118 (1994)

    Article  PubMed  CAS  Google Scholar 

  7. M. Hollstein, P. Hainaut, Massively regulated genes: the example of TP53. J. Pathol. 220, 164–173 (2010)

    PubMed  CAS  Google Scholar 

  8. R.U. Jänicke, V. Graupner, W. Budach, F. Essmann, The do’s and don’ts of p53 isoforms. Biol. Chem. 390, 951–963 (2009)

    Article  PubMed  Google Scholar 

  9. V. Olivares-Illana, R. Fahraeus, p53 isoforms gain functions. Oncogene 29, 5113–5119 (2010)

    Article  PubMed  CAS  Google Scholar 

  10. R. Saldana-Meyer, F. Recillas-Targa, Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics 6 (2011)

  11. M.P. Khoury, J.C. Bourdon, p53 isoforms: an intracellular microprocessor? Genes Cancer. 2, 453–465 (2011)

    Article  PubMed  CAS  Google Scholar 

  12. R. Holmila, C. Fouquet, J. Cadranel, G. Zalcman, T. Soussi, Splice mutations in the p53 gene: case report and review of the literature. Hum. Mutat. 21, 101–102 (2003)

    Article  PubMed  CAS  Google Scholar 

  13. V. Marcel, S. Perrier, M. Aoubala, S. Ageorges, M.J. Groves, A. Diot, K. Fernandes, S. Tauro, J.C. Bourdon, Delta160p53 is a novel N-terminal p53 isoform encoded by Delta133p53 transcript. FEBS Lett. (2010)

  14. K.P. Magnusson, M. Sandstrom, M. Stahlberg, M. Larsson, J. Flygare, D. Hellgren, K.G. Wiman, S. Ljungquist, p53 splice acceptor site mutation and increased HsRAD51 protein expression in Bloom’s syndrome GM1492 fibroblasts. Gene 246, 247–254 (2000)

    Article  PubMed  CAS  Google Scholar 

  15. G. Hofstetter, A. Berger, H. Fiegl, N. Slade, A. Zoric, B. Holzer, E. Schuster, V.J. Mobus, D. Reimer, G. Daxenbichler, C. Marth, A.G. Zeimet, N. Concin, R. Zeillinger, Alternative splicing of p53 and p73: the novel p53 splice variant p53delta is an independent prognostic marker in ovarian cancer. Oncogene 29, 1997–2004 (2010)

    Article  PubMed  CAS  Google Scholar 

  16. J. Southgate, K.A. Hutton, D.F. Thomas, L.K. Trejdosiewicz, Normal human urothelial cells in vitro: proliferation and induction of stratification. Lab Invest. 71, 583–594 (1994)

    PubMed  CAS  Google Scholar 

  17. M.J. Hoffmann, W.A. Schulz, Causes and consequences of DNA hypomethylation in human cancer. Biochem. Cell Biol. 83, 296–321 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. A.R. Florl, K.H. Franke, D. Niederacher, C.D. Gerharz, H.H. Seifert, W.A. Schulz, DNA methylation and the mechanisms of CDKN2A inactivation in transitional cell carcinoma of the urinary bladder. Lab Invest. 80, 1513–1522 (2000)

    Article  PubMed  CAS  Google Scholar 

  19. W. Otto, S. Denzinger, S. Bertz, A. Gaumann, P.J. Wild, A. Hartmann, R. Stoehr, No mutations of FGFR3 in normal urothelium in the vicinity of urothelial carcinoma of the bladder harbouring activating FGFR3 mutations in patients with bladder cancer. Int. J. Cancer 125, 2205–2208 (2009)

    Article  PubMed  CAS  Google Scholar 

  20. B. Vojtesek, H. Dolezalova, L. Lauerova, M. Svitakova, P. Havlis, J. Kovarik, C.A. Midgley, D.P. Lane, Conformational changes in p53 analysed using new antibodies to the core DNA binding domain of the protein. Oncogene 10, 389–393 (1995)

    PubMed  CAS  Google Scholar 

  21. E. Schrock, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M.A. Ferguson-Smith, Y. Ning, D.H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Ried, Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996)

    Article  PubMed  CAS  Google Scholar 

  22. A.R. Brothman, D.L. Persons, L.G. Shaffer, Nomenclature evolution: changes in the ISCN from the 2005 to the 2009 edition. Cytogenet Genome Res. 127, 1–4 (2009)

    Article  PubMed  CAS  Google Scholar 

  23. B. Hiller, J. Bradtke, H. Balz, H. Rieder, CyDAS: a cytogenetic data analysis system. Bioinformatics 21, 1282–1283 (2005)

    Article  PubMed  CAS  Google Scholar 

  24. T. Yeager, W. Stadler, C. Belair, J. Puthenveettil, O. Olopade, C. Reznikoff, Increased p16 levels correlate with pRb alterations in human urothelial cells. Cancer Res. 55, 493–497 (1995)

    PubMed  CAS  Google Scholar 

  25. E.J. Chapman, C.D. Hurst, E. Pitt, P. Chambers, J.S. Aveyard, M.A. Knowles, Expression of hTERT immortalises normal human urothelial cells without inactivation of the p16/Rb pathway. Oncogene 25, 5037–5045 (2006)

    Article  PubMed  CAS  Google Scholar 

  26. E.J. Chapman, G. Kelly, M.A. Knowles, Genes involved in differentiation, stem cell renewal, and tumorigenesis are modulated in telomerase-immortalized human urothelial cells. Mol. Cancer Res. 6, 1154–1168 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. N.J. MacLaine, M.D. Wood, J.C. Holder, R.W. Rees, J. Southgate, Sensitivity of normal, paramalignant, and malignant human urothelial cells to inhibitors of the epidermal growth factor receptor signaling pathway. Mol. Cancer Res. 6, 53–63 (2008)

    Article  PubMed  CAS  Google Scholar 

  28. B. George, R.H. Datar, L. Wu, J. Cai, N. Patten, S.J. Beil, S. Groshen, J. Stein, D. Skinner, P.A. Jones, R.J. Cote, p53 gene and protein status: the role of p53 alterations in predicting outcome in patients with bladder cancer. J. Clin. Oncol. 25, 5352–5358 (2007)

    Article  PubMed  CAS  Google Scholar 

  29. P.J. Goebell, S.G. Groshen, B.J. Schmitz-Drager, p53 immunohistochemistry in bladder cancer—a new approach to an old question. Urol. Oncol. 28, 377–388 (2010)

    Article  PubMed  CAS  Google Scholar 

  30. M.P. Khoury, J.C. Bourdon, The isoforms of the p53 protein. Cold Spring Harb. Perspect. Biol. 2, a000927 (2010)

    Article  PubMed  Google Scholar 

  31. V. Marcel, V. Vijayakumar, L. Fernandez-Cuesta, H. Hafsi, C. Sagne, A. Hautefeuille, M. Olivier, P. Hainaut, p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. Oncogene 29, 2691–2700 (2010)

    Article  PubMed  CAS  Google Scholar 

  32. K. Fujita, A.M. Mondal, I. Horikawa, G.H. Nguyen, K. Kumamoto, J.J. Sohn, E.D. Bowman, E.A. Mathe, A.J. Schetter, S.R. Pine, H. Ji, B. Vojtesek, J.C. Bourdon, D.P. Lane, C.C. Harris, p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat. Cell Biol. 11, 1135–1142 (2009)

    Article  PubMed  CAS  Google Scholar 

  33. J. Chen, S.M. Ng, C. Chang, Z. Zhang, J.C. Bourdon, D.P. Lane, J. Peng, p53 isoform delta113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish. Genes Dev. 23, 278–290 (2009)

    Article  PubMed  CAS  Google Scholar 

  34. Y. Ye, H. Yang, H.B. Grossman, C. Dinney, X. Wu, J. Gu, Genetic variants in cell cycle control pathway confer susceptibility to bladder cancer. Cancer 112, 2467–2474 (2008)

    Article  PubMed  CAS  Google Scholar 

  35. J.P. Melis, E.M. Hoogervorst, C.T. van Oostrom, E. Zwart, T.M. Breit, J.L. Pennings, A. de Vries, H. van Steeg, Genotoxic exposure: novel cause of selection for a functional DeltaN-p53 isoform. Oncogene 30, 1764–1772 (2011)

    Article  PubMed  CAS  Google Scholar 

  36. Z. Hu, X. Li, R. Yuan, B.Z. Ring, L. Su, Three common TP53 polymorphisms in susceptibility to breast cancer, evidence from meta-analysis. Breast Cancer Res. Treat. 120, 705–714 (2010)

    Article  PubMed  CAS  Google Scholar 

  37. C. Varley, G. Hill, S. Pellegrin, N.J. Shaw, P.J. Selby, L.K. Trejdosiewicz, J. Southgate, Autocrine regulation of human urothelial cell proliferation and migration during regenerative responses in vitro. Exp. Cell Res. 306, 216–229 (2005)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Andrea Meyer for initial establishment of the cell lines and to Prof. Rainer Jaenicke and Dr Günter Niegisch for helpful discussions. We are indebted to Dr. Bořivoj Vojtĕšek (Masaryk Memorial Cancer Institute, Brno, Czech Republic) for a generous gift of the DO12 antibody. We also thank Ms. Ina Bachmann for performing the comparable genomic hybridization analysis.

The study was supported by a start-up grant of the Forschungskommission der Medizinischen Fakultät of the Heinrich Heine University (H.H.S.), by a guest professorship of the German Academic Exchange Service (J.H.) and by the grant no. MSM 0021620819 ‘Replacement of and support to some vital organs of the Ministry of Education of the Czech Republic’ to J.H. A.K. is supported by a PhD fellowship from the Jürgen-Manchot foundation.

Conflict of interest

There are no conflicts of interest by any of the authors

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang A. Schulz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 115 kb)

Supplementary figure S1

p53 methylation analysis. Methylation-specific PCR with primers specific for methylated CpGs (M) or primers for unmethylated CpGs (U) following bisulfite treatment. Primers are located in the 5′-UTR in a sequence methylated in certain leukemia samples. The urothelial cancer cell lines BC44, BC61, 647v, 639v, 5637, VmCub1, HT1376, SW1710 and RT4 are all completely unmethylated in the analysed region. (GIF 464 kb)

High resolution image file (TIFF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, A., Hatina, J., Rieder, H. et al. Discovery of TP53 splice variants in two novel papillary urothelial cancer cell lines. Cell Oncol. 35, 243–257 (2012). https://doi.org/10.1007/s13402-012-0082-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-012-0082-8

Keywords

Navigation