Skip to main content
Log in

Convective drying of Moringa oleifera seeds: kinetics modelling and effects on oil yield from different extraction techniques

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This work shows the convective drying kinetics of moringa seeds (Moringa oleifera L) at different drying temperatures 40, 50, 60, 70, and 80 °C and the effect drying on the extracted oil yield. Four simplified models were fitted to the kinetics data, and a phenomenological mathematical model (PMM) was developed to describe the process. The simplified model that better represented the experimental data was Verma, with a global relative mean error of 1.31%. The PMM with the use of an equilibrium boundary condition at the surface produced better results than those obtained when considering the convective condition, indicating that the effects of external mass transfer resistance are neglected. The moringa oil was extracted from all dried seeds conditions using different extraction techniques, such as Soxhlet technique, ultrasound-assisted, and mechanical extraction; and the maximum oil yield obtained for dry seeds was 43.06%, 31.53%, and 24.93% respectively. All drying temperatures of the moringa seed do not show influence the oil yield obtained in each extraction method used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anwar F, Latif S, Ashraf M, Gilani AH (2007) Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res 21:17–25. https://doi.org/10.1002/ptr.2023

    Article  Google Scholar 

  2. Kooltheat N, Sranujit RP, Chumark P, Potup P, Laytragoon-Lewin N, Usuwanthim K (2014) An ethyl acetate fraction of Moringa oleifera Lam. Inhibits human macrophage cytokine production induced by cigarette smoke. Nutrient 6:697–710. https://doi.org/10.3390/nu6020697

    Article  Google Scholar 

  3. Tiloke C, Anand K, Gengan RM, Chuturgoon AA (2018) Moringa oleifera and their phytonanoparticles: potential antiproliferative agents against cancer. Biomed Pharmacother 108:457–466. https://doi.org/10.1016/j.biopha.2018.09.060

    Article  Google Scholar 

  4. Lin M, Zhang J, Chen X (2018) Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J Funct Foods 47:469–479. https://doi.org/10.1016/j.jff.2018.06.011

    Article  Google Scholar 

  5. Atabani AE, Mofijur M, Masjuki HH, Badruddin IA, Kalam MA, Chong WT (2014) Effect of Croton megalocarpus, Calophyllum inophyllum, Moringa oleifera, palm and coconut biodiesel–diesel blending on their physico-chemical properties. Ind Crop Prod 60:130–137. https://doi.org/10.1016/j.indcrop.2014.06.011

    Article  Google Scholar 

  6. Tambone F, Pradella M, Bedussi F, Adani F (2019) Moringa oleifera Lam. as an energy crop for biogas production in developing countries. Biomass Convers Bior 10:1083–1089. https://doi.org/10.1007/s13399-019-00550-x

    Article  Google Scholar 

  7. Paula HM, Oliveira Ilha MS, Sarmento AP, Andrade LS (2018) Dosage optimization of Moringa oleifera seed and traditional chemical coagulants solutions for concrete plant wastewater treatment. J Clean Prod 174:123–132. https://doi.org/10.1016/j.jclepro.2017.10.311

    Article  Google Scholar 

  8. Real-Olvera J, Rustrian-Portilla E, Houbron E, Landa-Huerta FJ (2015) Adsorption of organic pollutants from slaughterhouse wastewater using powder of Moringa oleifera seeds as a natural coagulant. Desalin Water Treat 57:9971–9981. https://doi.org/10.1080/19443994.2015.1033479

    Article  Google Scholar 

  9. Vieira AMS, Vieira MF, Silva GF, Araújo ÁA, Fagundes-Klen MR, Veit MT, Bergamasco R (2009) Use of Moringa oleifera seed as a natural adsorbent for wastewater treatment. Water Air Soil Pollut 206:273–281. https://doi.org/10.1007/s11270-009-0104-y

    Article  Google Scholar 

  10. Villaseñor-Basulto DL, Astudillo-Sánchez PD, Real-Olvera J, Bandala ER (2018) Wastewater treatment using Moringa oleifera Lam seeds: a review. J Water Process Eng 23:151–164. https://doi.org/10.1016/j.jwpe.2018.03.017

    Article  Google Scholar 

  11. Zhong J, Wang Y, Yang R, Liu X, Yang Q, Qin X (2018) The application of ultrasound and microwave to increase oil extraction from Moringa oleifera seeds. Ind Crop Prod 120:1–10. https://doi.org/10.1016/j.indcrop.2018.04.028

    Article  Google Scholar 

  12. Bhutada PR, Jadhav AJ, Pinjari DV, Nemade PR, Jain RD (2016) Solvent assisted extraction of oil from Moringa oleifera Lam. seeds. Ind Crop Prod 82:74–80. https://doi.org/10.1016/j.indcrop.2015.12.004

    Article  Google Scholar 

  13. Fakayode OA, Ajav EA (2016) Process optimization of mechanical oil expression from Moringa (Moringa oleifera) seeds. Ind Crop Prod 90:142–151. https://doi.org/10.1016/j.indcrop.2016.06.017

    Article  Google Scholar 

  14. Thirugnanasambandham K (2017) Ultrasound-assisted extraction of oil from Moringa oleifera Lam. seed using various solvents. Energ Source Part A 40:343–350. https://doi.org/10.1080/15567036.2017.1416708

    Article  Google Scholar 

  15. Rocha RP (2011) Influence of drying process on the quality of medicinal plants: a review. J Med Plant Res 5(33). https://doi.org/10.5897/JMPRX11.001

  16. Scheufele FB, Ribeiro C, Módenes AN, Espinoza-Quiñones FR, Bergamasco R, Pereira NC (2015) Assessment of drying temperature of sugarcane bagasse on sorption of reactive blue 5G dye. Fiber Polym 16:1646–1656. https://doi.org/10.1007/s12221-015-5087-2

    Article  Google Scholar 

  17. Aremu AK, Akintola A (2016) Drying kinetics of moringa (Moringa oleifera) seeds. J Life Sci Technol. https://doi.org/10.18178/jolst.4.1.7-10

  18. Popoola LT, Giwa A, Aderibigbe TA (2018) Kinetics, optimization and proximate analysis of drying Moringa oleifera seeds in a tray dryer. Ind Chem 03(01). https://doi.org/10.4172/2469-9764.1000123

  19. Omofoyewa MG, Popoola LT, Giwa A (2017) Optimization of drying parameters of moringa seeds in a tray dryer using Box-behnken technique of RSM. Int J Eng Res Afr 32:86–99. https://doi.org/10.4028/www.scientific.net/JERA.32.86

    Article  Google Scholar 

  20. Avhad MR, Marchetti JM (2016) Mathematical modelling of the drying kinetics of Hass avocado seeds. Ind Crop Prod 91:76–87. https://doi.org/10.1016/j.indcrop.2016.06.035

    Article  Google Scholar 

  21. Page GE (1949) Factors influencing the maximum rates of air drying shelled corn in thin layers. Purdue University, West Lafayette

    Google Scholar 

  22. Toğrul İT, Pehlivan D (2004) Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. J Food Eng 65:413–425. https://doi.org/10.1016/j.jfoodeng.2004.02.001

    Article  Google Scholar 

  23. Henderson SM (1974) Progress in developing the thin layer drying equation. Trans ASAE 17:1167–1168. https://doi.org/10.13031/2013.37052

    Article  Google Scholar 

  24. Verma LR, Bucklin RA, Endan JB, Wratten FT (1985) Effects of drying air parameters on rice drying models. Trans ASAE 28:296–0301. https://doi.org/10.13031/2013.32245

    Article  Google Scholar 

  25. Cruz FPB, Johann G, de Oliveira KC, Palú F, da Silva EA, Guirardello R, Curvelo Pereira N (2017) Crambe grain drying: Evaluation of a linear and double resistance driving force model and energetic performance. Renew Sust Energ Rev 80:1–8. https://doi.org/10.1016/j.rser.2017.05.170

    Article  Google Scholar 

  26. Doymaz İ (2005) Drying behaviour of green beans. J Food Eng 69:161–165. https://doi.org/10.1016/j.jfoodeng.2004.08.009

    Article  Google Scholar 

  27. AOCS (1998) Official methods and recommended practices of the American Oil Chemist’s Society. Method Cc 10c–95, 5th edn. AOCS, Champaign

    Google Scholar 

  28. Mohsenin NN (1986) Physical properties of plant and animal materials, 2nd edn. Gordon and Breach Science Publishers, New York

    Google Scholar 

  29. Moravec CM, Bradford K, Laca E (2008) Water relations of drumstick tree seed (Moringa oleifera): imbibition, desiccation, and sorption isotherms. Seed Sci Technol 36:311–324. https://doi.org/10.15258/sst.2008.36.2.05

    Article  Google Scholar 

  30. Aviara NA, Ehiabhi S, Ajibola O, Oni S, Power P, Abbas T, Onuh O (2011) Effects of moisture content and temperature on the specific heat of Soya bean, Moringa oleifera seed and Mucuna flagellipes nut. Int J Agri Biol Eng 4:87–92. https://doi.org/10.3965/j.ijabe.2011.04.01.087-092

    Article  Google Scholar 

  31. Ranz W, Marshall W (1952) Evaporation from drops. Chem Eng Prog 48:141–146

    Google Scholar 

  32. Mani S, Jaya S, Vadivambal R (2007) Optimization of solvent extraction of moringa (Moringa oleifera) seed kernel oil using response surface methodology. Food Bioprod Process 85:328–335. https://doi.org/10.1205/fbp07075

    Article  Google Scholar 

  33. Menezes ML, Johann G, Diorio A, Pereira NC, Silva EA (2018) Phenomenological determination of mass transfer parameters of oil extraction from grape biomass waste. J Clean Prod 176:130e139. https://doi.org/10.1016/j.jclepro.2017.12.128

    Article  Google Scholar 

  34. Johann G, Menezes ML, Pereira NC, Silva EA (2018) Assessment of pretreatment temperature on the oil extraction from the vinification waste. J Food Process Preserv:e13682. https://doi.org/10.1111/jfpp.13682

  35. Vega A, Fito P, Andrés A, Lemus R (2007) Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). J Food Eng 79:1460–1466. https://doi.org/10.1016/j.jfoodeng.2006.04.028

    Article  Google Scholar 

  36. Doymaz I, Gorel O, Akgun NA (2004) Drying characteristics of the solid by-product of olive oil extraction. Biosyst Eng 88:213–219. https://doi.org/10.1016/j.biosystemseng.2004.03.003

    Article  Google Scholar 

  37. Kaleemullah S, Kailappan R (2006) Modelling of thin-layer drying kinetics of red chillies. J Food Eng 76:531–537. https://doi.org/10.1016/j.jfoodeng.2005.05.049

    Article  Google Scholar 

  38. Kashaninejad M, Mortazavi A, Safekordi A, Tabil LG (2007) Thin-layer drying characteristics and modeling of pistachio nuts. J Food Eng 78:98–108. https://doi.org/10.1016/j.jfoodeng.2005.09.007

    Article  Google Scholar 

  39. Roberts JS, Kidd DR, Padilla-Zakour O (2008) Drying kinetics of grape seeds. J Food Eng 89:460–465. https://doi.org/10.1016/j.jfoodeng.2008.05.030

    Article  Google Scholar 

  40. Aral S, Bese AV (2016) Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem 210:577–584. https://doi.org/10.1016/j.foodchem.2016.04.128

    Article  Google Scholar 

  41. Evin D (2012) Thin layer drying kinetics of Gundelia tournefortii L. Food Bioprod Process 90:323–332. https://doi.org/10.1016/j.fbp.2011.07.002

    Article  Google Scholar 

  42. Aregbesola OA, Ogunsina BS, Sofolahan AE, Chime NN (2015) Mathematical modeling of thin layer drying characteristics of dika (Irvingia gabonensis) nuts and kernels. Nigerian Food J 33:83–89. https://doi.org/10.1016/j.nifoj.2015.04.012

    Article  Google Scholar 

  43. Perea-Flores MJ, Garibay-Febles V, Chanona-Pérez JJ, Calderón-Domínguez G, Méndez-Méndez JV, Palacios-González E, Gutiérrez-López GF (2012) Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind Crop Prod 38:64–71. https://doi.org/10.1016/j.indcrop.2012.01.008

    Article  Google Scholar 

  44. Johann G, Menezes ML, Pereira NC, Silva EA (2016) Comparing models to Neumann and Dirichlet conditions in grape seed drying. Appl Therm Eng 93:865–871. https://doi.org/10.1016/j.applthermaleng.2015.10.005

    Article  Google Scholar 

  45. Mercier S (2019) Contribution of external resistance to mass transfer during pasta drying. Dry Technol 37:59–68. https://doi.org/10.1080/07373937.2018.1437546

    Article  Google Scholar 

  46. Rovedo CO, Aguerre RJ, Suarez C (1993) Moisture diffusivities of sunflower seed components. Int J Food Sci Technol 28:159–168. https://doi.org/10.1111/j.1365-2621.1993.tb01261.x

    Article  Google Scholar 

  47. Ciro-Velásquez H, Cano L, Perez Alegría L (2010) Numerical simulation of thin layer coffee drying by control volumes. Dyna revfacnacminas [online] 77:270–278 ISSN 0012-7353

    Google Scholar 

  48. Silva WP, Silva CMDPS, Silva DDPS, Araújo Neves G, Lima AGB (2010) Mass and heat transfer study in solids of revolution via numerical simulations using finite volume method and generalized coordinates for the Cauchy boundary condition. Int J Heat Mass Transf 53:1183–1194. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.028

    Article  MATH  Google Scholar 

  49. Yang W, Sokhansanj S, Tang J, Winter P (2002) Determination of thermal conductivity, specific heat and thermal diffusivity of borage seeds. Biosyst Eng 82:169–176

    Article  Google Scholar 

  50. Posom J, Sirisomboon P (2014) Evaluation of the thermal properties of Jatropha curcas L. kernels using near-infrared spectroscopy. Biosyst Eng 125:45–53. https://doi.org/10.1016/j.biosystemseng.2014.06.011

    Article  Google Scholar 

  51. Aviara NA, Ogunjimi L (2008) Thermal properties of Guna seeds. Int Agro physics 22:29–297

    Google Scholar 

  52. Bamgboye AI, Adejumo OI (2010) Thermal properties of roselle seed. Int Agrophysic 24:85–87

    Google Scholar 

  53. Rebey I, Bourgou S, Sofiene BK, AidiWannes W, Riadh K, Tounsi M, Fauconnier M-L (2019) On the effect of initial drying techniques on essential oil composition, phenolic compound and antioxidant properties of anise (Pimpinella anisum L.) seeds. J Food Meas Charact. https://doi.org/10.1007/s11694-019-00284-4

  54. Radünz LL, Melo EC, Martins PM, Santos RHS, Santos RR, Machado MC (2002) Secagem de alecrim pimenta (Lippia sidoides Cham.) em secador de leito fixo. Rev Bras Plant Med 5:79–82

    Google Scholar 

  55. Routray W, Dave D, Ramakrishnan VV, Murphy W (2017) Study of drying kinetics of salmon processing by-products at different temperatures and the quality of extracted fish oil. Dry Technol 35:1981–1993. https://doi.org/10.1080/07373937.2017.1293684

    Article  Google Scholar 

  56. Gutiérrez L-F, Ratti C, Belkacemi K (2008) Effects of drying method on the extraction yields and quality of oils from quebec sea buckthorn (Hippophaërhamnoides L.) seeds and pulp. Food Chem 106:896–904. https://doi.org/10.1016/j.foodchem.2007.06.058

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to CAPES (Coordination for the Improvement of Higher Education Personnel), CNPq (National Counsel of Technological and Scientific Development, (Gredson Keiff Souza, Process no. 150602/2019-7)), and to the Complex of Research Support Centers (COMCAP/UEM) for the support in the analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernanda Naiara Campos de Almeida or Nehemias Curvelo Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, F.N.C., Johann, G., Siqueira, N.W. et al. Convective drying of Moringa oleifera seeds: kinetics modelling and effects on oil yield from different extraction techniques. Biomass Conv. Bioref. 12, 3197–3208 (2022). https://doi.org/10.1007/s13399-020-01198-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01198-8

Keywords

Navigation