Skip to main content
Log in

Synergistic effect of acidity balance and hydrothermal pretreatment severity on alkali extraction of hemicelluloses from corn stalk

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The current hemicelluloses extraction methods have problems such as low extraction ratio and quality. In the previous study, a new pH pre-corrected hydrothermal pretreatment has been proved effective in improving enzymatic hydrolysis of cellulose while retaining higher hemicelluloses without degradation. In this investigation, the synergistic effect of alkali loading and hydrothermal pretreatment severity on hemicelluloses preservation was studied. After pretreatment, the hemicelluloses were extracted with alkali. The results show that hemicelluloses extracted with 10% (w/v) NaOH after pH pre-corrected hydrothermal pretreatment at the severity of 2.0 contained no cellulose. At this condition, the ratios of hemicelluloses dissolution and recovery were the highest. The extracted hemicelluloses had the lowest color value, branch degree, and polydispersity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467. https://doi.org/10.1016/j.pecs.2012.03.002

    Article  Google Scholar 

  2. Taghizadehalisaraei A, Motevali A, Ghobadian B (2019) Ethanol production from date wastes: adapted technologies, challenges, and global potential. Renew Energy 143:1094–1110. https://doi.org/10.1016/j.renene.2019.05.048

    Article  Google Scholar 

  3. Ajao O, Marinova M, Savadogo O, Paris J (2018) Hemicellulose based integrated forest biorefineries: implementation strategies. Ind Crop Prod 126:250–260. https://doi.org/10.1089/ind.2014.1509

    Article  Google Scholar 

  4. Peng P, She D (2014) Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review. Carbohydr Polym 112:701–720. https://doi.org/10.1016/j.carbpol.2014.06.068

    Article  Google Scholar 

  5. Carvalheiro F, Duarte LC, Girio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67(11):849–864

    Google Scholar 

  6. Peng P, Zhai M, She D, Gao Y (2015) Synthesis and characterization of carboxymethyl xylan-g-poly (propylene oxide) and its application in films. Carbohydr Polym 133:117–125. https://doi.org/10.1016/j.carbpol.2015.07.009

    Article  Google Scholar 

  7. Min DY, Yang CM, Chiang V, Jameel H, Chang HM (2014) The influence of lignin-carbohydrate complexes on the cellulase-mediated saccharification II: transgenic hybrid poplars (Populus nigra L. and Populus maximowiczii A.). Fuel 116:56–62. https://doi.org/10.1016/j.fuel.2013.07.046

    Article  Google Scholar 

  8. Mahmood H, Moniruzzaman M, Iqbal T, Khan MJ (2019) Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Curr Opin Green Sustain Chem 20:18–24. https://doi.org/10.1016/j.cogsc.2019.08.001

  9. Koshijima T, Watanabe T, Yaku F (1989) Structure and properties of the lignin—carbohydrate complex polymer as an amphipathic substance. ACS Symp Ser:11–28. https://doi.org/10.1021/bk-1989-0397.ch002

  10. Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin? Carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules 6(6):3467–3473. https://doi.org/10.1021/bm058014q

    Article  Google Scholar 

  11. Terrett OM, Dupree P (2019) Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr Opin Biotechnol 56:97–104. https://doi.org/10.1016/j.copbio.2018.10.010

    Article  Google Scholar 

  12. Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? Biomass Bioenergy 19(4):229–244. https://doi.org/10.1016/S0961-9534(00)00038-6

    Article  Google Scholar 

  13. Timell T (1961) Isolation of galactoglucomannans from the wood of gymnosperms. Tappi 44(2):88–96

    Google Scholar 

  14. Egüés I, Sanchez C, Mondragon I, Labidi J (2012) Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresour Technol 103(1):239–248. https://doi.org/10.1016/j.biortech.2011.09.139

    Article  Google Scholar 

  15. Persson T, Ren JL, Joelsson E, Jönsson AS (2009) Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production. Bioresour Technol 100(17):3906–3913. https://doi.org/10.1016/j.biortech.2009.02.063

    Article  Google Scholar 

  16. Sun R, Tomkinson J, Wang Y, Xiao B (2000) Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer 41(7):2647–2656. https://doi.org/10.1016/S0032-3861(99)00436-X

    Article  Google Scholar 

  17. Shatalov AA, Pereira H (2002) Carbohydrate behaviour of Arundo donax L. in ethanol–alkali medium of variable composition during organosolv delignification. Carbohydr Polym 49(3):331–336. https://doi.org/10.1016/s0144-8617(01)00340-x

    Article  Google Scholar 

  18. Saake B, Kruse T, Puls J (2001) Investigation on molar mass, solubility and enzymatic fragmentation of xylans by multi-detected SEC chromatography. Bioresour Technol 80(3):195–204. https://doi.org/10.1016/s0960-8524(01)00089-x

    Article  Google Scholar 

  19. Xu F, Liu CF, Geng ZC, Sun JX, Sun RC, Hei BH, Lin L, Wu SB, Je J (2006) Characterisation of degraded organosolv hemicelluloses from wheat straw. Polym Degrad Stab 91(8):1880–1886. https://doi.org/10.1016/j.polymdegradstab.2005.11.002

    Article  Google Scholar 

  20. Peng F, Peng P, Xu F, Sun R-C (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30(4):879–903. https://doi.org/10.1016/j.biotechadv.2012.01.018

    Article  Google Scholar 

  21. Devendra Prasad Maurya AS, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5(5):597–609. https://doi.org/10.1007/s13205-015-0279-4

    Article  Google Scholar 

  22. Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41. https://doi.org/10.1016/j.carbpol.2017.09.064

    Article  Google Scholar 

  23. Kim Y, Mosier NS, Ladisch MR (2009) Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol Prog 25(2):340–348. https://doi.org/10.1002/btpr.137

    Article  Google Scholar 

  24. Pérez JA, Ballesteros I, Ballesteros M, Sáez F, Negro MJ, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87(17–18):3640–3647. https://doi.org/10.1016/j.fuel.2008.06.009

    Article  Google Scholar 

  25. Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):1–10. https://doi.org/10.1186/1754-6834-6-16

    Article  Google Scholar 

  26. Gao Y, Wang H, Guo J, Peng P, Zhai M, She D (2016) Hydrothermal degradation of hemicelluloses from triploid poplar in hot compressed water at 180–340 C. Polym Degrad Stab 126:179–187. https://doi.org/10.1016/j.polymdegradstab.2016.02.003

    Article  Google Scholar 

  27. Li H-Q, Jiang W, Jia J-X, Xu J (2014) pH pre-corrected liquid hot water pretreatment on corn stover with high hemicellulose recovery and low inhibitors formation. Bioresour Technol 153:292–299. https://doi.org/10.1016/j.biortech.2013.11.089

    Article  Google Scholar 

  28. Li H, Li C, Sang T, Xu J (2013) Pretreatment on Miscanthus lutarioriparious by liquid hot water for efficient ethanol production. Biotechnol Biofuels 6(1):76–76. https://doi.org/10.1186/1754-6834-6-76

    Article  Google Scholar 

  29. Li H-Q, Xu J (2013) A new correction method for determination on carbohydrates in lignocellulosic biomass. Bioresour Technol 138:373–376. https://doi.org/10.1016/j.biortech.2013.03.148

    Article  Google Scholar 

  30. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure 1617:1–16

    Google Scholar 

  31. Lin Y-S, Tseng M-J, Lee W-C (2011) Production of xylooligosaccharides using immobilized endo-xylanase of Bacillus halodurans. Process Biochem 46(11):2117–2121

    Article  Google Scholar 

  32. Liu KX, Li HQ, Zhang J, Zhang ZG, Xu J (2016) The effect of non-structural components and lignin on hemicellulose extraction. Bioresour Technol 214:755–760. https://doi.org/10.1016/j.biortech.2016.05.036

    Article  Google Scholar 

  33. Shen R, Li HQ, Zhang J, Xu J (2016) Effects of impurities in alkali-extracted xylan on its enzymatic hydrolysis to produce xylo-oligosaccharides. Appl Biochem Biotechnol 179(5):740–752. https://doi.org/10.1007/s12010-016-2028-5

    Article  Google Scholar 

  34. Van Dongen FEM, Van Eylen D, Kabel MA (2011) Characterization of substituents in xylans from corn cobs and stover. Carbohydr Polym 86(2):722–731. https://doi.org/10.1016/j.carbpol.2011.05.007

    Article  Google Scholar 

  35. Peng H, Chen H, Qu Y, Li H, Xu J (2014) Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH. Appl Energy 117(1):142–148. https://doi.org/10.1016/j.apenergy.2013.12.002

    Article  Google Scholar 

  36. Jiang W, Chang S, Li H, Oleskowicz-Popiel P, Xu J (2015) Liquid hot water pretreatment on different parts of cotton stalk to facilitate ethanol production. Bioresour Technol 176:175–180. https://doi.org/10.1016/j.biortech.2014.11.023

    Article  Google Scholar 

  37. Geng W, Narron R, Jiang X, Pawlak JJ, H-m C, Park S, Jameel H, Venditti RA (2019) The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass. Cellulose 26(5):3219–3230. https://doi.org/10.1007/s10570-019-02261-y

    Article  Google Scholar 

  38. Li F, Ren S, Zhang W, Xu Z, Xie G, Chen Y, Tu Y, Li Q, Zhou S, Li Y (2013) Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresour Technol 130(1):629–637. https://doi.org/10.1016/j.biortech.2012.12.107

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21576266), the Wanjiang Scholar Program, and the Start Fund for Biochemical Engineering Research Center from Anhui University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wu, H., Shakeel, U. et al. Synergistic effect of acidity balance and hydrothermal pretreatment severity on alkali extraction of hemicelluloses from corn stalk. Biomass Conv. Bioref. 12, 459–468 (2022). https://doi.org/10.1007/s13399-020-01196-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01196-w

Keywords

Navigation