Skip to main content

Advertisement

Log in

Use of waste Japonochytrium sp. biomass after lipid extraction as an efficient adsorbent for triphenylmethane dye applied in aquaculture

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Comprehensive processing of Japonochytrium sp., one of marine fungi considered as a perspective source of functional lipids, was tested as an example of circular economy. Residual biomass after extraction of lipids (omega-3 polyunsaturated fatty acids and triacylglycerols) was magnetically modified using methanol suspension of microwave-synthesized magnetic iron oxides and tested as a potential biosorbent for triphenylmethane dye, crystal violet, used in aquaculture. Employing a batch experimental setup, influence of pH value (3–9), incubation time (0–270 min), initial dye concentration (400–1000 mg/L) of crystal violet, and temperature (282.15–313.15 K) on adsorption efficacy was studied. Adsorption equilibrium data were analyzed and fitted to the Langmuir, Freundlich, and Sips isotherm models. The monolayer maximum adsorption capacity of magnetically responsive spent biomass was found to be 329.22 mg/g at 294.15 K. The adsorption process agreed best with the pseudo-second-order kinetic model, and thermodynamic studies showed an endothermic nature of adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal - a review. J Environ Manage 90(8):2313–2342

    Article  Google Scholar 

  2. Carmen Z, Daniela S (2012) Textile organic dyes - characteristics, polluting effects and separation/elimination procedures from industrial effluents - a critical overview. In: Puzyn T, Mostrag-Szlichtyng A (eds) Organic pollutants ten years after the Stockholm convention - environmental and analytical update. InTech, Rijeka, pp 55–86

    Google Scholar 

  3. Baldikova E, Politi D, Maderova Z, Pospiskova K, Sidiras D, Safarikova M, Safarik I (2016) Utilization of magnetically responsive cereal by-product for organic dye removal. J Sci Food Agric 96(6):2204–2214

    Article  Google Scholar 

  4. Bergwerff AA, Scherpenisse P (2003) Determination of residues of malachite green in aquatic animals. J Chromatogr B 788(2):351–359

    Article  Google Scholar 

  5. Andersen WC, Turnipseed SB, Karbiwnyk CM, Lee RH, Clark SB, Rowe WD, Madson MR, Miller KE (2009) Multiresidue method for the triphenylmethane dyes in fish: malachite green, crystal (gentian) violet, and brilliant green. Anal Chim Acta 637(1–2):279–289

    Article  Google Scholar 

  6. Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30(7):953–971

    Article  Google Scholar 

  7. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    Article  Google Scholar 

  8. Zhang J, Li Y, Zhang C, Jing Y (2008) Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root. J Hazard Mater 150(3):774–782

    Article  Google Scholar 

  9. Adeyemo AA, Adeoye IO, Bello OS (2017) Adsorption of dyes using different types of clay: a review. Appl Water Sci 7(2):543–568

    Article  Google Scholar 

  10. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085

    Article  Google Scholar 

  11. Suba V, Rathika G (2016) Novel adsorbents for the removal of dyes and metals from aqueous solution-a review. J Adv Phys 5(4):277–294

    Article  Google Scholar 

  12. Sarat Chandra T, Mudliar SN, Vidyashankar S, Mukherji S, Sarada R, Krishnamurthi K, Chauhan VS (2015) Defatted algal biomass as a non-conventional low-cost adsorbent: surface characterization and methylene blue adsorption characteristics. Bioresour Technol 184:395–404

    Article  Google Scholar 

  13. Deniz F, Kepekci RA (2016) Equilibrium and kinetic studies of azo dye molecules biosorption on phycocyanin-extracted residual biomass of microalga Spirulina platensis. Desalin Water Treat 57(26):12257–12263

    Article  Google Scholar 

  14. Vilar VJP, Botelho CMS, Boaventura RAR (2007) Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium. J Hazard Mater 149(3):643–649

    Article  Google Scholar 

  15. Vilar VJP, Botelho CMS, Boaventura RAR (2008) Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium. Bioresour Technol 99(4):750–762

    Article  Google Scholar 

  16. Bulgariu D, Bulgariu L (2012) Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresour Technol 103(1):489–493

    Article  Google Scholar 

  17. Inoue K, Gurung M, Adhikari BB, Alam S, Kawakita H, Ohto K, Kurata M, Atsumi K (2014) Adsorptive removal of cesium using bio fuel extraction microalgal waste. J Hazard Mater 271:196–201

    Article  Google Scholar 

  18. Barrow CJ (2010) Marine nutraceuticals: glucosamine and omega-3 fatty acids. New trends for established ingredients. Agro Food Ind Hi Tech 21(2):36–41

    Google Scholar 

  19. Chang KJL, Paul H, Nichols PD, Koutoulis A, Blackburn SI (2015) Australian thraustochytrids: potential production of dietary long-chain omega-3 oils using crude glycerol. J Funct Food 19:810–820

    Article  Google Scholar 

  20. Gupta A, Barrow CJ, Puri M (2012) Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 30(6):1733–1745

    Article  Google Scholar 

  21. Dick MW (2001) Straminipilous fungi: systematics of the Peronosporomycetes including accounts of the marine straminipilous protists, the plasmodiophorids and similar organisms. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  22. Humhal T, Kastanek P, Jezkova Z, Cadkova A, Kohoutkova J, Branyik T (2017) Use of saline waste water from demineralization of cheese whey for cultivation of Schizochytrium limacinum PA-968 and Japonochytrium marinum AN-4. Bioprocess Biosyst Eng 40(3):395–402

    Article  Google Scholar 

  23. Rouskova M, Maleterova Y, Hurkova K, Kastanek P, Hanika J, Solcova O (2017) Fatty acids profile analysis in fresh suspension of Japonochytrium sp. In: Proceedings of the 5th International Conference on Chemical Technology, 10–12. April 2017, Mikulov, Czech Republic, pp. 78–82

  24. Safarik I, Baldikova E, Pospiskova K, Safarikova M (2016) Magnetic modification of diamagnetic agglomerate forming powder materials. Particuology 29:169–171

    Article  Google Scholar 

  25. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70(2):115–124

    Article  Google Scholar 

  26. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689

    Article  Google Scholar 

  27. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civil Eng 89(2):31–60

    Google Scholar 

  28. Liu Y (2009) Is the free energy change of adsorption correctly calculated? J Chem Eng Data 54(7):1981–1985

    Article  Google Scholar 

  29. Daneshvar E, Kousha M, Jokar M, Koutahzadeh N, Guibal E (2012) Acidic dye biosorption onto marine brown macroalgae: isotherms, kinetic and thermodynamic studies. Chem Eng J 204:225–234

    Article  Google Scholar 

  30. Bellisola G, Sorio C (2012) Infrared spectroscopy and microscopy in cancer research and diagnosis. Am J Cancer Res 2(1):1–21

    Google Scholar 

  31. Cheriaa J, Khaireddine M, Rouabhia M, Bakhrouf A (2012) Removal of triphenylmethane dyes by bacterial consortium. Sci World J 2012:1–9. https://doi.org/10.1100/2012/512454

    Article  Google Scholar 

  32. Kumara N, Hamdan N, Petra MI, Tennakoon KU, Ekanayake P (2014) Equilibrium isotherm studies of adsorption of pigments extracted from Kuduk-kuduk (Melastoma malabathricum L.) pulp onto TiO2 nanoparticles. J Chem. https://doi.org/10.1155/2014/468975

  33. Saeed A, Sharif M, Iqbal M (2010) Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. J Hazard Mater 179:564–572

    Article  Google Scholar 

  34. Pourjavadi A, Nazari M, Hosseini SH (2015) Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution. RSC Adv 5:32263–32271

    Article  Google Scholar 

  35. Sun P, Hui C, Azim Khan R, Du J, Zhang Q, Zhao Y-H (2015) Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Sci Rep (UK) 5:12638

    Article  Google Scholar 

  36. Safarik I, Angelova R, Baldikova E, Pospiskova K, Safarikova M (2017) Leptothrix sp. sheaths modified with iron oxide particles: magnetically responsive, high aspect ratio functional material. Mater Sci Eng C 71:1342–1346

    Article  Google Scholar 

  37. Jerold M, Vasantharaj K, Joseph D, Sivasubramanian V (2017) Fabrication of hybrid biosorbent nanoscale zero-valent iron-Sargassum swartzii biocomposite for the removal of crystal violet from aqueous solution. Int J Phytoremediation 19:214–224

    Article  Google Scholar 

  38. Angelova R, Baldikova E, Pospiskova K, Maderova Z, Safarikova M, Safarik I (2016) Magnetically modified Sargassum horneri biomass as an adsorbent for organic dye removal. J Clean Prod 137:189–194

    Article  Google Scholar 

  39. Muthukumaran C, Sivakumar VM, Thirumarimurugan M (2016) Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J Taiwan Inst Chem Eng 63:354–362

    Article  Google Scholar 

  40. Madrakian T, Afkhami A, Ahmadi M (2012) Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochim Acta A 99:102–109

    Article  Google Scholar 

  41. Sahraei R, Sekhavat Pour Z, Ghaemy M (2017) Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: removal of heavy metals and dyes from water. J Clean Prod 142:2973–2984

    Article  Google Scholar 

  42. Tahir N, Bhatti HN, Iqbal M, Noreen S (2017) Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. Int J Biol Macromol 94:210–220

    Article  Google Scholar 

  43. Sun P, Hui C, Khan RA, Guo X, Yang S, Zhao Y (2017) Mechanistic links between magnetic nanoparticles and recovery potential and enhanced capacity for crystal violet of nanoparticles-coated kaolin. J Clean Prod 164:695–702

    Article  Google Scholar 

  44. Pourjavadi A, Hosseini SH, Seidi F, Soleyman R (2013) Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels. Polym Int 62:1038–1044

    Article  Google Scholar 

  45. Safarik I, Horska K, Svobodova B, Safarikova M (2012) Magnetically modified spent coffee grounds for dyes removal. Eur Food Res Technol 234:345–350

    Article  Google Scholar 

  46. Alizadeh N, Shariati S, Besharati N (2017) Adsorption of crystal violet and methylene blue on Azolla and fig leaves modified with magnetite iron oxide nanoparticles. Int J Environ Res 11:197–206

    Article  Google Scholar 

  47. Safarik I, Lunackova P, Mosiniewicz-Szablewska E, Weyda F, Safarikova M (2007) Adsorption of water-soluble organic dyes on ferrofluid-modified sawdust. Holzforschung 61:247–253

    Article  Google Scholar 

  48. Kanwal A, Bhatti HN, Iqbal M, Noreen S (2017) Basic dye adsorption onto clay/MnFe2O4 composite: a mechanistic study. Water Environ Res 89:301–311

    Article  Google Scholar 

  49. Hamidzadeh S, Torabbeigi M, Shahtaheri SJ (2015) Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide. J Environ Health Sci Eng 13:8

    Article  Google Scholar 

  50. Safarikova M, Pona BMR, Mosiniewicz-Szablewska E, Weyda F, Safarik I (2008) Dye adsorption on magnetically modified Chlorella vulgaris cells. Fresenius Environ Bull 17:486–492

    Google Scholar 

  51. Safarik I, Rego LFT, Borovska M, Mosiniewicz-Szablewska E, Weyda F, Safarikova M (2007) New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzym Microb Technol 40:1551–1556

    Article  Google Scholar 

  52. Salehi I, Shirani M, Semnani A, Hassani M, Habibollahi S (2016) Comparative study between response surface methodology and artificial neural network for adsorption of crystal violet on magnetic activated carbon. Arab J Sci Eng 41:2611–2621

    Article  Google Scholar 

  53. Safarik I, Baldikova E, Prochazkova J, Safarikova M, Pospiskova K (2018) Magnetically modified agricultural and food waste: preparation and application. J Agric Food Chem 66:2538–2552

    Article  Google Scholar 

  54. Badescu IU, Bulgariu D, Ahmad I, Bulgariu L (2018) Valorisation possibilities of exhausted biosorbents loaded with metal ions – a review. J Environ Manag 224:288–297

    Article  Google Scholar 

Download references

Funding

The research was supported by the projects LTC17020 and LO1305 (Ministry of Education, Youth and Sports of the Czech Republic) and by the ERDF/ESF project “New Composite Materials for Environmental Applications” (No. CZ.02.1.01/0.0/0.0/17_048/0007399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Safarik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldikova, E., Mullerova, S., Prochazkova, J. et al. Use of waste Japonochytrium sp. biomass after lipid extraction as an efficient adsorbent for triphenylmethane dye applied in aquaculture. Biomass Conv. Bioref. 9, 479–488 (2019). https://doi.org/10.1007/s13399-018-0362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-018-0362-2

Keywords

Navigation