Skip to main content
Log in

Methyl β-cyclodextrin as a booster for the extraction for Olea europaea leaf polyphenols with a bio-based deep eutectic solvent

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A novel deep eutectic solvent (DES) with optimised composition was used to evaluate the effect of methyl β-cyclodextrin (CD) on the efficiency of polyphenol extraction from Olea europaea leaves (OLLs). The process developed was based on a 23 full-factorial design and response surface methodology to assess the simultaneous effect of CD concentration (C CD), liquid-to-solid ratio (R L/S ) and temperature (T). Under optimised conditions (C CD = 9%, R L/S = 40 mL g−1, T = 51 °C), the yield in total polyphenols (Y TP) was 116.65 ± 3.60 mg gallic acid equivalents per g dry weight. This value was significantly higher than that determined for the extraction performed with 60% aqueous ethanol. The extraction kinetics also showed that the extraction rate was slowed down in the presence of CD, yet the higher extraction capacity of the DES/CD medium was confirmed. Characterisation of the extracts obtained with DES/CD and DES by means of liquid chromatography-mass spectrometry demonstrated that there was no selective extraction of any particular polyphenol, suggesting that CD acted merely as an extraction booster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A AR :

Antiradical activity (μmol DPPH g−1)

D e :

Diffusivity (m2 s−1)

h :

Initial extraction rate (mg g−1 min−1)

k :

Second-order extraction rate constant (g mg−1 min−1)

P R :

Reducing power (μmol AAE g−1)

R L/S :

Liquid-to-solid ratio (mL g−1)

t :

Time (min)

T :

Temperature (°C)

Y TFn :

Yield in total flavonoids (mg RtE g−1)

Y TP :

Yield in total polyphenols (mg GAE g−1)

Y TP(s) :

Yield in total polyphenols at saturation (mg GAE g−1)

AAEs:

Ascorbic acid equivalents

CD:

Methyl β-cyclodextrin

DESs:

Deep eutectic solvents

DPPH:

2,2-Diphenyl-1-picrylhydrazyl radical

GAEs:

Gallic acid equivalents

OLLs:

Olea europaea leaves

RtE:

Rutin equivalents

TPTZ:

2,4,6-Tripyridyl-s-triazine

References

  1. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12):1231–1246

    Article  Google Scholar 

  2. Mojzer BE, Knez HM, Škerget M, Knez Ž, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21(7):901

    Article  Google Scholar 

  3. Roselló-Soto E, Koubaa M, Moubarik A, Lopes RP, Saraiva JA, Boussetta N, Grimi N, Barba FJ (2015) Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: nonconventional methods for the recovery of high-added value compounds. Trends Food Sci Technol 45:296–310

    Article  Google Scholar 

  4. Obied HK, Prenzler PD, Omar SH, Ismael R, Servili M, Esposto S, Taticchi A, Selvaggini R, Urbani S (2012) Pharmacology of olive biophenols. Adv Mol Toxicol 6:195–242

    Article  Google Scholar 

  5. Şahin S, Samli R, Tan ASB, Barba FJ, Chemat F, Cravotto G, Lorenzo JM (2017) Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: antioxidant and antimicrobial properties. Molecules 22:1056

    Article  Google Scholar 

  6. Putnik P, Kovăcević DB, Jambrak AR, Barba FJ, Cravotto G, Binello A, Lorenzo JM, Shpigelman A (2017) Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes—a review. Molecules 22:680

    Article  Google Scholar 

  7. Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramón DJ (2016) Deep eutectic solvents: the organic reaction medium of the century. Eur J Org Chem 2016(4):612–632

    Article  Google Scholar 

  8. Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101:121–135

    Article  Google Scholar 

  9. Munin A, Edwards-Lévy F (2011) Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3(4):793–829

    Article  Google Scholar 

  10. Kyriakidou K, Mourtzinos I, Biliaderis CG, Makris DP (2016) Optimization of a green extraction/inclusion complex formation process to recover antioxidant polyphenols from oak acorn husks (Quercus robur) using aqueous 2-hydroxypropyl-β-cyclodextrin/glycerol mixtures. Environments 3(1):3

    Article  Google Scholar 

  11. Mourtzinos I, Anastasopoulou E, Petrou A, Grigorakis S, Makris D, Biliaderis CG (2016) Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J Food Sci Technol 53(11):3939–3947

    Article  Google Scholar 

  12. Parmar I, Sharma S, Rupasinghe HV (2015) Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology. J Food Sci Technol 52(4):2202–2210

    Article  Google Scholar 

  13. Athanasiadis V, Grigorakis S, Lalas S, Makris DP (2017) Highly efficient extraction of antioxidant polyphenols from Olea europaea leaves using an eco-friendly glycerol/glycine deep eutectic solvent. Waste Biomass Valoriz.https://doi.org/10.1007/s12649-017-9997-7

  14. Mylonaki S, Kiassos E, Makris DP, Kefalas P (2008) Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Anal Bioanal Chem 392(5):977

    Article  Google Scholar 

  15. Karvela E, Makris DP, Kalogeropoulos N, Karathanos VT, Kefalas P (2009) Factorial design optimisation of grape (Vitis vinifera) seed polyphenol extraction. Eur Food Res Technol 229(5):731–742

    Article  Google Scholar 

  16. Apostolakis A, Grigorakis S, Makris DP (2014) Optimisation and comparative kinetics study of polyphenol extraction from olive leaves (Olea europaea) using heated water/glycerol mixtures. Separ Purif Technol 128:89–95

    Article  Google Scholar 

  17. Shehata E, Grigorakis S, Loupassaki S, Makris DP (2015) Extraction optimisation using water/glycerol for the efficient recovery of polyphenolic antioxidants from two Artemisia species. Separ Purif Technol 149:462–469

    Article  Google Scholar 

  18. Paleologou I, Vasiliou A, Grigorakis S, Makris DP (2016) Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Conv Bioref 6(3):289–299

    Article  Google Scholar 

  19. Manousaki A, Jancheva M, Grigorakis S, Makris DP (2016) Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: a comparison with conventional eco-friendly solvents. Recycling 1(1):194–204

    Article  Google Scholar 

  20. Jancheva M, Grigorakis S, Loupassaki S, Makris DP (2017) Optimised extraction of antioxidant polyphenols from Satureja thymbra using newly designed glycerol-based natural low-transition temperature mixtures (LTTMs). J Appl Res Med Aromat Plants.https://doi.org/10.1016/j.jarmap.2017.01.002

  21. Dai Y, Verpoorte R, Choi YH (2014) Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem 159:116–121

    Article  Google Scholar 

  22. Trasanidou D, Apostolakis A, Makris DP (2016) Development of a green process for the preparation of antioxidant and pigment-enriched extracts from winery solid wastes using response surface methodology and kinetics. Chem Eng Commun 203(10):1317–1325

    Article  Google Scholar 

  23. Vetal MD, Lade VG, Rathod VK (2013) Extraction of ursolic acid from Ocimum sanctum by ultrasound: process intensification and kinetic studies. Chem Eng Process 69:24–30

    Article  Google Scholar 

  24. Karageorgou I, Grigorakis S, Lalas S, Makris DP (2017) Enhanced extraction of antioxidant polyphenols from Moringa oleifera Lam. leaves using a biomolecule-based low-transition temperature mixture. Eur Food Res Technol.https://doi.org/10.1007/s00217-017-2887-1

  25. Patsea M, Stefou I, Grigorakis S, Makris DP (2017) Screening of natural sodium acetate-based low-transition temperature mixtures (LTTMs) for enhanced extraction of antioxidants and pigments from red vinification solid wastes. Environ Proc 4(1):123–135

    Article  Google Scholar 

  26. Qi X-L, Peng X, Huang Y-Y et al (2015) Green and efficient extraction of bioactive flavonoids from Equisetum palustre L. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment. Ind Crop Prod 70:142–148

    Article  Google Scholar 

  27. Karakashov B, Grigorakis S, Loupassaki S, Makris DP (2015) Optimisation of polyphenol extraction from Hypericum perforatum (St. John’s Wort) using aqueous glycerol and response surface methodology. J Appl Res Med Aromat Plants 2(1):1–8

    Google Scholar 

  28. Ratnasooriya CC, Rupasinghe HV (2012) Extraction of phenolic compounds from grapes and their pomace using β-cyclodextrin. Food Chem 134(2):625–631

    Article  Google Scholar 

  29. Rajha HN, Chacar S, Afif C, Vorobiev E, Louka N, Maroun RG (2015) β-Cyclodextrin-assisted extraction of polyphenols from vine shoot cultivars. J Agric Food Chem 63(13):3387–3393

    Article  Google Scholar 

  30. Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046

    Article  Google Scholar 

  31. Çelik SE, Özyürek M, Güçlü K, Apak R (2015) Antioxidant capacity of quercetin and its glycosides in the presence of β-cyclodextrins: influence of glycosylation on inclusion complexation. J Incl Phenom Macrocycl Chem 83(3–4):309–319

    Article  Google Scholar 

  32. Philippi K, Tsamandouras N, Grigorakis S, Makris DP (2016) Ultrasound-assisted green extraction of eggplant peel (Solanum melongena) polyphenols using aqueous mixtures of glycerol and ethanol: optimisation and kinetics. Environ Process 3:369–386

    Article  Google Scholar 

  33. Mantegna S, Binello A, Boffa L, Giorgis M, Cena C, Cravotto G (2012) A one-pot ultrasound-assisted water extraction/cyclodextrin encapsulation of resveratrol from Polygonum cuspidatum. Food Chem 130(3):746–750

    Article  Google Scholar 

  34. Shao P, Zhang J, Fang Z, Sun P (2014) Complexing of chlorogenic acid with β-cyclodextrins: inclusion effects, antioxidative properties and potential application in grape juice. Food Hydrocoll 41:132–139

    Article  Google Scholar 

  35. Medronho B, Valente AJ, Costa P, Romano A (2014) Inclusion complexes of rosmarinic acid and cyclodextrins: stoichiometry, association constants, and antioxidant potential. Colloid Polym Sci 292(4):885–894

    Article  Google Scholar 

  36. Alvarez-Parrilla E, Rosa LADL, Torres-Rivas F, Rodrigo-Garcia J, González-Aguilar GA (2005) Complexation of apple antioxidants: chlorogenic acid, quercetin and rutin by β-cyclodextrin (β-CD). J Incl Phenom Macrocycl Chem 53(1):121–129

    Article  Google Scholar 

  37. Budryn G, Nebesny E, Pałecz B, Rachwał-Rosiak D, Hodurek P, Miśkiewicz K, Oracz J, Żyżelewicz D (2014) Inclusion complexes of β-cyclodextrin with chlorogenic acids (CHAs) from crude and purified aqueous extracts of green Robusta coffee beans (Coffea canephora L.) Food Res Int 61:202–213

    Article  Google Scholar 

  38. Hădărugă NG, Hădărugă DI, Isengard H-D (2012) Water content of natural cyclodextrins and their essential oil complexes: a comparative study between Karl Fischer titration and thermal methods. Food Chem 132(4):1741–1748

    Article  Google Scholar 

  39. Mourtzinos I, Salta F, Yannakopoulou K, Chiou A, Karathanos VT (2007) Encapsulation of olive leaf extract in β-cyclodextrin. J Agric Food Chem 55(20):8088–8094

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris P. Makris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athanasiadis, V., Grigorakis, S., Lalas, S. et al. Methyl β-cyclodextrin as a booster for the extraction for Olea europaea leaf polyphenols with a bio-based deep eutectic solvent. Biomass Conv. Bioref. 8, 345–355 (2018). https://doi.org/10.1007/s13399-017-0283-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-017-0283-5

Keywords

Navigation