Skip to main content
Log in

One-vessel saccharification and fermentation of pretreated sugarcane bagasse using a helical impeller bioreactor

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The effect of Tween® 80 and the cellulase load, on the enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse (HPSB), was evaluated in shake flask experiments, using experimental design. The optimized conditions were further applied in a second set of shake flask experiments to study the effect of the biomass load. The overall optimum parameters, e.g., 6.9% Tween® 80, 15 FPU/g glucan, and 150 g/L (dry HPSB), were used in hydrolysis experiments carried out in a laboratory-scale bioreactor equipped with a helical impeller. After a 48 h reaction time, 60% of the HPSB glucan content was hydrolyzed into glucose. The same bioreactor and hydrolysis conditions were used for one-vessel saccharification and fermentation experiments as follows: 150 g/L (dry HPSB) was hydrolyzed at 50 °C and 150 rpm for either 24 or 48 h, followed by the bioreactor’s temperature and mixing decrease to 30 °C and 90 rpm for ethanol fermentation by Saccharomyces cerevisiae. Experiments resulted in ethanol yields of 48 or 52%, for hydrolysis time of 24 or 48 h, respectively, taking into account the HPSB glucan content. The best ethanol productivity, for the overall process of 0.51 g/L.h, was achieved for the 24 h hydrolysis time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings—a review. Biomass Bioenergy 56:526–544. doi:10.1016/j.biombioe.2013.05.031

    Article  Google Scholar 

  2. Hodge DB, Karim MN, Schell DJ, McMillan JD (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol 99(18):8940–8948. doi:10.1016/j.biortech.2008.05.015

    Article  Google Scholar 

  3. Roche CM, Dibble CJ, Knutsen JS, Stickel JJ, Liberatore MW (2009) Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104(2):290–300. doi:10.1002/bit-22381

    Article  Google Scholar 

  4. Kristensen JB, Felby C, Jorgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2:11. doi:10.1186/1754-6834-2-1

    Article  Google Scholar 

  5. Humbird D, Mohagheghi A, Dowe N, Schell DJ (2010) Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover. Biotechnol Prog 26(5):1245–1251. doi:10.1002/btpr-441

    Article  Google Scholar 

  6. Pereira LTC, Teixeira RSS, Bon EPS, Freitas SP (2011) Sugarcane bagasse enzymatic hydrolysis: rheological data as criteria for impeller selection. J Ind Microbiol Biot 38:901–907. doi:10.1007/s10295-010-0857-8

    Article  Google Scholar 

  7. Helle SS, Duff SJB, Cooper DG (1993) Effect of surfactants on cellulose hydrolysis. Biotechnol Bioeng 42:611–617. doi:10.1002/bit.260420509

    Article  Google Scholar 

  8. Cannella D, Jørgensen H (2014) Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng 111:59–68. doi:10.1002/bit.25098

    Article  Google Scholar 

  9. Kim SB, Kim HJ, Kim CJ (2006) Enhancement of the enzymatic digestibility of waste newspaper using Tween. Appl Biochem Biotech 130(1):486–495

    Article  Google Scholar 

  10. Wang W, Zhuang X, Yuan Z, Yu Q, Qi W, Wang Q, Tan X (2012) High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresour Technol 108:252–257. doi:10.1016/j.biortech.2011.12.092

    Article  Google Scholar 

  11. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K (2015) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv 33:1091–1107. doi:10.1016/j.biotechadv.2014.12.002

    Article  Google Scholar 

  12. Ask M, Olofsson K, Di Felice T, Ruohonen L, Penttila M, Lidén G (2012) Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem 47:1452–1459. doi:10.1016/j.procbio.2012.05.016

    Article  Google Scholar 

  13. Lu J, Li XZ, Yang RF, Zhao J, Qu YB (2013) Tween 40 pretreatment of unwashed water-insoluble solids of reed straw and corn stover pretreated with liquid hot water to obtain high concentrations of bioethanol. Biotechnol Biofuels 6:159. doi:10.1186/1754-6834-6-159

    Article  Google Scholar 

  14. Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2:707–738

    Google Scholar 

  15. Faga BA, Wilkins MR, Banat IM (2010) Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D5A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresour Technol 101:2273–2279. doi:10.1016/j.biortech.2009.11.001

    Article  Google Scholar 

  16. Ballesteros M, Oliva J, Negro M, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848. doi:10.1016/j.procbio.2003.09.011

    Article  Google Scholar 

  17. Öhgren K, Vehmaanperä J, Siika-Aho M, Galbe M, Viikari L, Zacchi G (2007) High temperature enzymatic pre-hydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzyme Microb Tech 40:607–613. doi:10.1016/j.enzmictec-2006-05-014

    Article  Google Scholar 

  18. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass http://www.nrel.gov/docs/gen/fy08/42619.pdf. Accessed 20 October 2014

  19. Paredes RS, Olivieri RRB, Inoue H, Yano S, Bon EPS (2015) Production of xylanase, α-L-arabinofuranosidase, β-xylosidase, and β-glucosidase by Aspergillus awamori using the liquid stream from hot-compressed water treatment of sugarcane bagasse. Biomass Conversion Biorefinery 5:299–307. doi:10.1007/s13399-015-0159-5

    Article  Google Scholar 

  20. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples http://shodexhplc.com/wp-content/uploads/2015/02/NREL-determination-of-sugarsbyproducts-and-degradation-products-in-liquid-fraction-process-samples.pdf. Accessed 15 October 2014

  21. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268. doi:10.1351/pac198759020257

    Article  Google Scholar 

  22. Gottschalk LMF, Oliveira RA, Bon EPS (2010) Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 51:72–78. doi:10.1016/j.bej.2010.05.003

    Article  Google Scholar 

  23. Martín C, Rocha GJM, Santos JRA, Wanderley MCA, Gouveia ER (2012) Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse. Quim Nov. 35(10):1927–1930

  24. Kuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A, Pletschke BI, Singh A, Karp M (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sust Energ Rev 55:249–272. doi:10.1016/j.rser.2015.10.132

    Article  Google Scholar 

  25. Dowe N, McMillan J (2001) SSF experimental protocols: lignocellulosic biomass hydrolysis and fermentation https://wiki.umn.edu/pub/Cellulase/Literature/Lignocellulosic_Biomass_Hydrolysis_and_Fermentation_-_Lab_Analyitcal_Procedure.pdf. Accessed 30 November 2014

  26. Cui L, Liu Z, Hui LF, Si CL (2011) Effect of cellobiase and surfactant supplementation on the enzymatic hydrolysis of pretreated wheat straw. Bioresources 6(4):3850–3858

    Google Scholar 

  27. le Maire M, Champeil P, Møller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111. doi:10.1016/S0304-4157(00)00010-1

    Article  Google Scholar 

  28. Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100:1214–1220. doi:10.1016/j.biortech.2008.08.033

    Article  Google Scholar 

  29. Yang M, Zhang A, Liu B, Li W, Xing J (2011) Improvement of cellulose conversion caused by the protection of Tween-80 on the adsorbed cellulase. Biochem Eng J56:125–129. doi:10.1016/j.bej.2011.04.009

    Article  Google Scholar 

  30. Santos VTO, Esteves PJ, Milagres AMF, Carvalho W (2011) Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pretreated with dilute sulfuric acid. Ind Microbiol Biot 38:1089–1098. doi:10.1007/s10295-010-0888-1

    Article  Google Scholar 

  31. Wen ZY, Liao W, Chen SL (2004) Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour Technol 91(1):31–39. doi:10.1016/S0960-8524(03)00166-4

    Article  Google Scholar 

  32. Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870. doi:10.1002/bit.21115

    Article  Google Scholar 

  33. Liu Z, Qin L, Zhu JQ, Li BZ, Yuan YJ (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7:167

    Article  Google Scholar 

  34. Zhang J, Chu D, Huang J, Yu Z, Dai G, BAO J (2010) Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnol Bioeng 105(4):718–728. doi:10.1002/bit.22593

    Google Scholar 

  35. Oldshue JM (1983) Fluid mixing technology. McGraw-Hall, New York

    Google Scholar 

  36. Yang J, Zhang X, Yong Q, Yu S (2011) Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration. Bioresour Technol 102:4905–4908. doi:10.1016/j.biortech.2010.12.04

    Article  Google Scholar 

  37. Gao Y, Xu J, Yuan Z, Zhang Y, Liu Y, Liang C (2014) Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. Bioresour Technol 167:41–45. doi:10.1016/j.biortech.2014.05.034

    Article  Google Scholar 

  38. Martins LHS, Rabelo SC, Costa AC (2015) Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresour Technol 191:312–321. doi:10.1016/j.biortech.2015.05.024

    Article  Google Scholar 

  39. Ramos LP, Silva L, Ballem AC, Pitarelo AP, Chiarello LM, Silveira MHL (2015) Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings. Bioresour Technol 175:195–202. doi:10.1016/j.biortech.2014.10.087

    Article  Google Scholar 

  40. Lopéz-Linares JC, Romero I, Cara C, Ruiz E, Moya M, Castro E (2014) Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel 122:112–118. doi:10.1016/j.fuel.2014.01.024

    Article  Google Scholar 

  41. Uppugundla N, da Costa SL, Chundawat SPS, Yu X, Simmons B, Singh S (2014) A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover. Biotechnol Biofuels 7:72. doi:10.1186/1754-6834-7-72

    Article  Google Scholar 

  42. Lu J, Li XZ, Zhao J, Qu Y (2012) Enzymatic saccharification and ethanol fermentation of reed pretreated with liquid hot water. J Biomed Biotechnol 2012. doi:10.1155/2012/276278

  43. Tomás-Pejó E, Oliva JM, Gonzáles A, Ballesteros I, Ballesteros M (2009) Bioethanol production from wheat straw by the termotolerant yeast Kluyveromyces marxianus CECE 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel 88:2142–2147. doi:10.1186/1754-6834-6-160

    Article  Google Scholar 

  44. Karimi K, Emtiazi G, Taherzadeh MJ (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae and Saccharomyces cerevisiae. Enzyme Microb Tech 40(1):138–144. doi:10.1016/j.enzmictec.2005.10.046

    Article  Google Scholar 

  45. Concalves FA, Ruiz HA, da Costa NC, Dos Santos ES, Teixeira JA, de Macedo GR (2014) Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel 131:66–76. doi:10.1016/j.fuel.2014.04.021

    Article  Google Scholar 

  46. Koppram R, Olsson L (2014) Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings. Biotechnol Biofuels 7(54). doi:10.1186/1754-6834-7-54

  47. Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2008) Simultaneous saccharification and fermentation of kanlow switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnol Bioeng 101(5):894–902. doi:10.1002/bit.21965

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Usina Santa Luzia–Odebrecht Agroindustrial, located in the state of Mato Grosso do Sul, Brazil, for providing the sugarcane bagasse. This work received financial support from Research and Projects Financing Agency (FINEP), The Brazilian Research Council (CNPq), and The Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elba Pinto da Silva Bon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, R.A., Gottschalk, L.M.F., Freitas, S.P. et al. One-vessel saccharification and fermentation of pretreated sugarcane bagasse using a helical impeller bioreactor. Biomass Conv. Bioref. 8, 1–10 (2018). https://doi.org/10.1007/s13399-017-0272-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-017-0272-8

Keywords

Navigation