Skip to main content

Advertisement

Log in

Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Hierarchical ZSM-5 and Beta zeolites, loaded with MgO and ZnO, have been explored for the catalytic fast-pyrolysis of eucalyptus woodchips. These materials exhibit a high dispersion of the MgO or ZnO phases, which is probably due to the presence of a hierarchical porosity with both micro- and mesopores in the zeolitic supports. The incorporation of these metal oxides led to a significant reduction in the textural properties and to changes in the acidic properties of the parent zeolites. Thus, a decrease in the concentration of Brønsted acid sites was observed, which was accompanied by the generation of additional Lewis acid sites with medium strength. In addition, the incorporation of metal oxide promotes the formation of significant amount of basic sites, especially for the samples loaded with MgO. Catalytic fast pyrolysis experiments of eucalyptus woodchips were performed in a fixed bed reactor at 500 °C and atmospheric pressure under a nitrogen flow. In comparison with non-catalytic fast pyrolysis, the use of zeolitic catalysts caused a decrease in the bio-oil* (water free basis bio-oil) production due to enhanced formation of gases, as well as coke deposition on the catalyst. However, the quality of the bio-oil* was enhanced since the catalysts were able to decrease its oxygen content. In this way, h-ZSM-5-based catalysts showed a clearly deeper deoxygenation degree compared to those having h-Beta as support, with very low content of anhydro sugars and the formation of a significant amount of aromatics. Regarding the effect of the metal oxide phase, MgO-loaded samples provided bio-oil* with enhanced energy yields and lower oxygen content, probably due to the adequate balance of Lewis acid and basic sites. Likewise, significant differences were observed among the catalysts regarding the deoxygenation pathways and the compounds families present in the bio-oil*.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem 16:384–406. doi:10.1039/c3gc41631c

    Article  Google Scholar 

  2. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513. doi:10.1039/c004654j

    Article  Google Scholar 

  3. Iliopoulou EF, Stefanidis SD, Kalogiannis KG, Delimitis A, Lappas AA, Triantafyllidis KS (2012) Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl Catal B Environ 127:281–290. doi:10.1016/j.apcatb.2012.08.030

    Article  Google Scholar 

  4. Dickerson T, Soria J (2013) Catalytic fast pyrolysis: a review. Energies 6:514–538. doi:10.3390/en6010514

    Article  Google Scholar 

  5. Mihalcik DJ, Mullen CA, Boateng A (2011) Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrolysis 92:224–232. doi:10.1016/j.jaap.2011.06.001

    Article  Google Scholar 

  6. Imran A, Bramer EA, Seshan K, Brem G (2014) High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate. Fuel Process Technol 127:72–79. doi:10.1016/j.fuproc.2014.06.011

    Article  Google Scholar 

  7. Zhang H, Xiao R, Jin B, Xiao G, Chen R (2013) Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol 140:256–262. doi:10.1016/j.biortech.2013.04.094

    Article  Google Scholar 

  8. Asadieraghi M, Daud WMAW (2015) In-situ catalytic upgrading of biomass pyrolysis vapor: using a cascade system of various catalysts in a multi-zone fixed bed reactor. Energy Convers Manag 101:151–163. doi:10.1016/j.enconman.2015.05.008

    Article  Google Scholar 

  9. Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY (2008) Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel 87:2493–2501. doi:10.1016/j.fuel.2008.02.015

    Article  Google Scholar 

  10. Tan S, Zhang Z, Sun J, Wang Q (2013) Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chinese J Catal 34:641–650. doi:10.1016/S1872-2067(12)60531-2

    Article  Google Scholar 

  11. Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623. doi:10.1039/c3cs60414d

    Article  Google Scholar 

  12. Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S, Wang Y (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal A Gen 470:115–122. doi:10.1016/j.apcata.2013.10.040

    Article  Google Scholar 

  13. Naqvi SR, Uemura Y, Yusup S, Sugiura Y, Nishiyama N (2015) In situ catalytic fast pyrolysis of paddy husk pyrolysis vapors over MCM-22 and ITQ-2 zeolites. J Anal Appl Pyrolysis 114:32–39. doi:10.1016/j.jaap.2015.04.003

    Article  Google Scholar 

  14. Foster AJ, Jae J, Cheng YT, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal A Gen 423–424:154–161. doi:10.1016/j.apcata.2012.02.030

    Article  Google Scholar 

  15. Park HJ, Heo HS, Jeon JK, Kim J, Ryoo R, Jeong KE, Park YK (2010) Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites. Appl Catal B Environ 95:365–373. doi:10.1016/j.apcatb.2010.01.015

    Article  Google Scholar 

  16. Park HJ, Park KH, Jeon JK, Kim J, Ryoo R, Jeong KE, Park SH, Park YK (2012) Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel 97:379–384. doi:10.1016/j.fuel.2012.01.075

    Article  Google Scholar 

  17. Lin Y, Zhang C, Zhang M, Zhang J (2010) Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor. Energy and Fuels 24:5686–5695. doi:10.1021/ef1009605

    Article  Google Scholar 

  18. Putun E (2010) Catalytic pyrolysis of biomass: effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy 35:2761–2766. doi:10.1016/j.energy.2010.02.024

    Article  Google Scholar 

  19. Zhou L, Yang H, Wu H, Wang M, Cheng D (2013) Catalytic pyrolysis of rice husk by mixing with zinc oxide: characterization of bio-oil and its rheological behavior. Fuel Process Technol 106:385–391. doi:10.1016/ j.fuproc.2012.09.003

    Article  Google Scholar 

  20. Fanchiang WL, Lin YC (2002) Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts. Appl Catal A Gen 419–420:102–110. doi:10.1016/j.apcata.2012.01.017

    Google Scholar 

  21. Channiwala SA, Parikh, PP (2002) A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels. Fuel, 2002, 81, 1051-1063. doi: 10.1016/S0016-2361(01)00131-4

  22. Serrano DP, Aguado J, Escola JM, Rodríguez JM, Peral Á (2006) Hierarchical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds. Chem. Mater. 18:2462–2464. doi: 10.1021/cm060080r

  23. Aguado J, Serrano DP, Rodríguez JM (2008) Zeolite Beta with hierarchical porosity prepared from organofunctionalized seeds. Microporous Mesoporous Mater 115:504–513. doi: 10.1016/j.micromeso.2008.02.026

  24. Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354. doi: 10.1006/jcat.1993.1145

  25. Serrano DP, García RA, Vicente G, Linares M, Procházková D, Čejka J (2011) Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. J Catal 279:366–380. doi: 10.1016/j.jcat.2011.02.007

  26. Fermoso J, Hernando H, Jana P, Moreno I, Přech J, Ochoa-Hernández C, Pizarro P, Coronado JM, Čejka J, Serrano DP (2016) Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catal Today 15:171–181. doi: 10.1016/j.cattod.2015.12.009

  27. Lermer H, Draeger M, Steffen J, Unger KK (1985) Synthesis and structure refinement of ZSM-5 single crystals. Zeolites 5:131–134. doi:10.1016/0144-2449(85)90019-3

    Article  Google Scholar 

  28. Omegna A, Vasic M, Van Bokhoven JA, Pirngruber G, Prins R (2004) Dealumination and realumination of microcrystalline zeolite Beta: an XRD, FTIR and quantitative multinuclear (MQ) MAS NMR study. Phys Chem Chem Phys 6:447–452. doi:10.1039/b311925d

    Article  Google Scholar 

  29. García-Muñoz RA, Serrano DP, Vicente G, Linares M, Vitvarova D, Čejka J (2015) Remarkable catalytic properties of hierarchical zeolite-beta in epoxide rearrangement reactions. Catal Today 243:141–152. doi:10.1016/j.cattod.2014.09.014

    Article  Google Scholar 

  30. Poupin C, Maache R, Pirault-Roy L, Brahmi R, Williams CT (2014) Effect of Al2O3/MgO molar ratio on catalytic performance of Pt/MgO-Al2O3 catalyst in acetonitrile hydrogenation followed by Fourier transform infrared spectroscopy. Appl Catal A Gen 475:363–370. doi:10.1016/j.apcata.2014.01.041

    Article  Google Scholar 

  31. Travert A, Vimont A, Sahibed-Dine A, Daturi M, Lavalley JC (2006) Use of pyridine CH(D) vibrations for the study of Lewis acidity of metal oxides. Appl Catal A Gen 307:98–107. doi:10.1016/j.apcata.2006.03.011

    Article  Google Scholar 

  32. Barbosa LAMM, Van Santen RA (1999) Theoretical study of the enhanced Brønsted acidity of Zn2+-exchanged zeolites. Catal Letters 63:97–106. doi:10.1023/A:1019004702119

    Article  Google Scholar 

  33. Escola JM, Aguado J, Serrano DP, Briones L, Díaz de Tuesta JL, Calvo R, Fernandez E (2012) Conversion of polyethylene into transportation fuels by the combination of thermal cracking and catalytic hydroreforming over Ni-supported hierarchical beta zeolite. Energy Fuel 26:3187–3195. doi:10.1021/ef300938r

    Article  Google Scholar 

  34. Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279:257–268. doi:10.1016/j.jcat.2011.01.019

    Article  Google Scholar 

  35. Cheng S, Wei L, Zhao X, Julson J (2016) Application, deactivation, and regeneration of heterogeneous catalysts in bio-oil upgrading. Catalysts 195:6–24. doi:10.3390/catal6120195

    Google Scholar 

  36. Xie J, Zhuang W, Zhang W, Yan N, Zhou Y, Wang J (2017) Construction of acid–base synergetic sites on mg-bearing BEA zeolites triggers the unexpected low-temperature alkylation of phenol. Chem Cat Chem 9(6):1076–1083. doi:10.1002/cctc.201601127

    Google Scholar 

  37. Stefanidis SD, Karakoulia SA, Kalogiannis KG, Iliopoulou EF, Delimitis A, Yiannoulakisc H, Zampetakisc T, Lappas AA, Triantafyllidis KS (2016) Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Appl Catal B Environ 196:155–173. doi:10.1016/j.apcatb.2016.05.031

    Article  Google Scholar 

  38. Nguyen TS, Zabeti M, Lefferts L, Brem G, Seshan K (2013) Catalytic upgrading of biomass pyrolysis vapours using faujasite zeolite catalysts. Biomass Bioenergy 48:100–110. doi:10.1016/j.biombioe.2012.10.024

    Article  Google Scholar 

  39. Hernando H, Jiménez-Sánchez S, Fermoso J, Pizarro P, Coronado JM, Serrano DP (2016) Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels. Catal Sci Technol 6:2829–2843. doi:10.1039/C6CY00522E

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the European Union Seventh Framework Programme (FP7/2007-2013), under grant agreement no. 604307, and from the Spanish Ministry of Economy and Competitiveness (CATPLASBIO project, Ref: CTQ2014-602209-R). JC acknowledges the Czech Science Foundation for the support of the project P106/12/G015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiří Čejka or David P. Serrano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernando, H., Moreno, I., Fermoso, J. et al. Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides. Biomass Conv. Bioref. 7, 289–304 (2017). https://doi.org/10.1007/s13399-017-0266-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-017-0266-6

Keywords

Navigation