Skip to main content

Advertisement

Log in

The impact of sorbent geometry on the sulphur adsorption under supercritical water conditions: a numerical study

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A numerical model to show the impact of the adsorption bed geometry on the desulfurization process of wet biomass under supercritical water (SCW) gasification process has been developed. Three different geometries, straight channels (pipe), sharp-edged channels (sharp) and packed bed of particles (pebbles) have been considered for the sorbent bed. The influence of the flow patterns on the sulphur distribution inside the bed and on the saturation of the sorbent has been analysed. The results show that, when the flow is unidirectional with a parabolic profile, as in the pipe geometry, the adsorption process can be explained based on the 1D plug-flow model. In the case of more complex flow structures, when torus-shaped vortices appeared in the sharp or pebbles geometries, the 3D flow effects should be considered. The present work might provide useful information for the evaluation of sulphur sorption under SCW conditions. The models obtained by computational fluid dynamic, which are under experimental validation using neutron imaging, will help for the sorbent design and production by 3D printing techniques, which represent an advanced engineered tool to improve the process efficiency and sorbent material selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peng G (2015) Methane production from microalgae via continuous catalytic supercritical water gasification: development of catalysts and sulfur removal techniques. EPFL thesis No. 6740, 2015.

  2. Peng G, Ludwig C, Vogel F Catalytic supercritical water gasification: interaction of sulfur with ZnO and the ruthenium catalyst. Appl Catal B Environ. doi:10.1016/j.apcatb. 2016.09.011

  3. Bagnoud-Velasquez M, Brandenberger M, Vogel F, Ludwig C (2014) Continuous catalytic hydrothermal gasification of algal biomass and case study on toxicity of aluminum as a step toward effluents recycling. Catal Today 223:35–43. doi:10.1016/j.cattod. 2013.12.001

    Article  Google Scholar 

  4. Waldner MH, Vogel F (2005) Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Ind Eng Chem Res 44(13):4543–4551. doi:10.1021/ie050161h

    Article  Google Scholar 

  5. Qingxia Z (2009) The use of microalgae for energy and biofuel (biodiesel) production and CO2 fixation – phase 3: characterization of biomass feedstock. Project ENAC final report. EPFL, Lausanne

    Google Scholar 

  6. Huang HY, Long RQ, Yang RT (2001) A highly sulfur resistant Pt-Rh/TiO2/Al2O3 storage catalyst for NOx reduction under lean-rich cycles. Applied Catalysis B-Environmental 33(2):127–136. doi:10.1016/s0926-3373(01)00176-x

    Article  Google Scholar 

  7. Navarro RM, Pawelec B, Trejo JM, Mariscal R, Fierro JLG (2000) Hydrogenation of aromatics on sulfur-resistant PtPd bimetallic catalysts. J Catal 189(1):184–194. doi:10.1006/jcat. 1999.2693

    Article  Google Scholar 

  8. Dreher M, Steib M, Nachtegaal M, Wambach J, Vogel F (2014) On-stream regeneration of a sulfur-poisoned ruthenium-carbon catalyst under hydrothermal gasification conditions. ChemCatChem 6(2):626–633. doi:10.1002/cctc. 201300791

    Article  Google Scholar 

  9. Ahmed I, Jhung SH (2016) Adsorptive desulfurization and denitrogenation using metal-organic frameworks. J Hazard Mater 301:259–276. doi:10.1016/j.jhazmat. 2015.08.045

    Article  Google Scholar 

  10. Kaufman Rechulski MD (2012) Catalysts for high temperature gas cleaning in the production of synthetic natural gas from biomass. EPF Lausanne, PhD Thesis no. 5484.

  11. Elseviers WF, Verelst H (1999) Transition metal oxides for hot gas desulphurisation. Fuel 78(5):601–612. doi:10.1016/s0016-2361(98)00185-9

    Article  Google Scholar 

  12. Ates A, Azimi G, Choi K-H, Green WH, Timko MT (2014) The role of catalyst in supercritical water desulfurization. Appl Catal B Environ 147(0):144–155. doi:10.1016/j.apcatb. 2013.08.018

    Article  Google Scholar 

  13. Yang H, Cahela DR, Tatarchuk BJ (2008) A study of kinetic effects due to using microfibrous entrapped zinc oxide sorbents for hydrogen sulfide removal. Chem Eng Sci 63(10):2707–2716. doi:10.1016/j.ces. 2008.02.025

    Article  Google Scholar 

  14. White FM (1999) Fluid mechanics. McGraw-Hill series in mechanical engineering, 4th edn. WCB McGraw-Hill, Boston

    Google Scholar 

  15. Cybulksi A (1998) Structured catalysts and reactors. Chemical industries, vol vol 71. Basel etc., Dekker, New York

    Google Scholar 

  16. Schildhauer TJ, Newson E, Wokaun A (2009) Closed cross flow structures—improving the heat transfer in fixed bed reactors by enforcing radial convection. Chem Eng Process 48(1):321–328. doi:10.1016/j.cep. 2008.04.009

    Article  Google Scholar 

  17. Ferziger JH, Peri CM (2002) Computational methods for fluid dynamics, 3rd, rev. edn. Springer, Berlin

  18. Guardo A, Coussirat M, Recasens F, Larrayoz MA, Escaler X (2006) CFD study on particle-to-fluid heat transfer in fixed bed reactors: convective heat transfer at low and high pressure. Chem Eng Sci 61(13):4341–4353. doi:10.1016/j.ces. 2006.02.011

    Article  Google Scholar 

  19. Guardo A, Coussirat M, Recasens F, Larrayoz MA, Escaler X (2007) CFD studies on particle-to-fluid mass and heat transfer in packed beds: free convection effects in supercritical fluids. Chem Eng Sci 62(18–20):5503–5511. doi:10.1016/j.ces. 2007.02.040

    Article  Google Scholar 

  20. Augier F, Laroche C, Brehon E (2008) Application of computational fluid dynamics to fixed bed adsorption calculations: effect of hydrodynamics at laboratory and industrial scale. Sep Purif Technol 63(2):466–474. doi:10.1016/j.seppur. 2008.06.007

    Article  Google Scholar 

  21. Duggirala RK, Roy CJ, Dhage P, Tatarchuk BJ (2015) Joint numerical-experimental investigation of enhanced chemical reactivity in microfibrous materials for desulfurization. Journal of Fluids Engineering-Transactions of the Asme 137(3). doi:10.1115/1.4028602

  22. Verbruggen SW, Keulemans M, van Walsem J, Tytgat T, Lenaerts S, Denys S (2016) CFD modeling of transient adsorption/desorption behavior in a gas phase photocatalytic fiber reactor. Chem Eng J 292:42–50. doi:10.1016/j.cej. 2016.02.014

    Article  Google Scholar 

  23. Marocco L, Mora A (2013) CFD modeling of the dry-sorbent-injection process for flue gas desulfurization using hydrated lime. Sep Purif Technol 108:205–214. doi:10.1016/j.seppur. 2013.02.012

    Article  Google Scholar 

  24. Thomas WJ, Crittenden B (1998) 5 - Processes and cycles. In: Thomas WJ, Crittenden B (eds) Adsorption Technology & Design. Butterworth-Heinemann, Oxford, pp 96–134. Doi: 10.1016/B978-075061959-2/50006-9

  25. Walton MS (1960) Molecular diffusion rates in supercritical water vapor estimated from viscosity data. Am J Sci 258(6):385–401. doi:10.2475/ajs. 258.6.385

    Article  Google Scholar 

  26. Taylor LT (1996) Supercritical fluid extraction. Wiley, New York etc

    Google Scholar 

  27. Thomas WJ, Crittenden B (1998) 4 - Rates of adsorption of gases and vapours by porous media. In: Thomas WJ, Crittenden B (eds) Adsorption Technology & Design. Butterworth-Heinemann, Oxford, pp 66–95. doi: 10.1016/B978-075061959-2/50005-7

  28. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10. doi:10.1016/j.cej. 2009.09.013

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Swiss National Science Foundation for the financial support (project No. 153314). We thank Dr. Rudolf Struis for valuable discussions. The Swiss Competence Center for Bioenergy Research (SCCER BIOSWEET) and their partners are acknowledged for the valuable collaboration. The cooperation of the authors has been supported by a CROSS project at Paul Scherrer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Niceno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maxim, F., Niceno, B., Testino, A. et al. The impact of sorbent geometry on the sulphur adsorption under supercritical water conditions: a numerical study. Biomass Conv. Bioref. 7, 479–485 (2017). https://doi.org/10.1007/s13399-017-0265-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-017-0265-7

Keywords

Navigation