Skip to main content

Advertisement

Log in

Thermochemical valorization of camelina straw waste via fast pyrolysis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The present work investigates the thermochemical valorization of camelina straw, which is a waste generated during the harvesting of Camelina sativa, an oilseed crop for the production of biodiesel or hydrotreated vegetable oil (HVO). In particular, it is focused on obtaining bio-oil via thermal or catalytic fast pyrolysis, which would be the first stage on a sequence of chemical processes for biofuel production. The catalytic interference of the inorganic matter present in the biomass was studied by preparing a batch of de-ashed camelina straw by washing with diluted nitric acid. Chemical analysis revealed this treatment effectively removed alkaline (K and Na) and alkaline earth (Ca and Mg) metals. Pyrolysis of de-ashed camelina straw led to higher mass and energy yields of bio-oil in water-free basis (bio-oil*), but with higher oxygen concentration. Catalytic pyrolysis over HZSM-5 was also studied in both raw and de-ashed feedstocks. This catalyst promoted mainly decarbonylation and decarboxylation reactions of the pyrolysis vapors, leading to much higher gas yields and lower of bio-oil*, but with better quality. Catalytic pyrolysis of untreated camelina straw exhibited a synergetic effect between both the inorganic matter and the external HZSM-5 catalyst, so that bio-oil* yield was the lowest (20 wt%) due to an extensive deoxygenation (18 wt% oxygen content), which resulted in the highest HHV obtained (37.3 MJ/kgdb). Significant differences were also found on the molecular composition of the bio-oils* with larger proportion of anhydro sugars when the biomass was de-ashed, while HZSM-5 strongly promoted the formation of oxygenated aromatics and aromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Röder M, Whittaker C, Thornley P (2014) How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass Bioenergy 79:50–63. doi:10.1016/j.biombioe.2015.03.030

    Article  Google Scholar 

  2. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  Google Scholar 

  3. Kubička D, Kubičková I, Čejka J (2013) Application of molecular sieves in transformations of biomass and biomass-derived feedstocks. Catal Rev 55(1):1–78. doi:10.1080/01614940.2012.685811

    Article  Google Scholar 

  4. Meier D, van de Beld B, Bridgwater AV, Elliott DC, Oasmaa A, Preto F (2013) State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renew Sust Energ Rev 20:619–641. doi:10.1016/j.rser.2012.11.061

    Article  Google Scholar 

  5. Azar C, Lindgren K, Andersson BA (2003) Global energy scenarios meeting stringent CO 2 constraints—cost-effective fuel choices in the transportation sector. Energy Policy 31(10):961–976

    Article  Google Scholar 

  6. AEBIOM (1997) Annual Report 2015. 15:1–184. doi:10.2307/3395557

  7. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20(3):848–889

    Article  Google Scholar 

  8. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18(2):590–598. doi:10.1021/Ef034067u

    Article  Google Scholar 

  9. Peters JF, Iribarren D, Dufour J (2015) Life cycle assessment of pyrolysis oil applications. Biomass Convers Biorefinery 5(1). doi:10.1007/s13399-014-0120-z

  10. Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials—a review. Bioresour Technol 68(1):71–77. doi:10.1016/S0960-8524(98)00086-8

    Article  Google Scholar 

  11. Talmadge MS, Baldwin RM, Biddy MJ et al (2014) A perspective on oxygenated species in the refinery integration of pyrolysis oil. Green Chem 16(2):407–453. doi:10.1039/C3GC41951G

    Article  Google Scholar 

  12. Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol 100(24):6496–6504. doi:10.1016/j.biortech.2009.06.095

    Article  Google Scholar 

  13. Patwardhan PR, Brown RC, Shanks BH (2011) Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem 4(5):636–643. doi:10.1002/cssc.201000425

    Article  Google Scholar 

  14. Mu W, Ben H, Ragauskas A, Deng Y (2013) Lignin pyrolysis components and upgrading—technology review. BioEnergy Res 6(4):1183–1204. doi:10.1007/s12155-013-9314-7

    Article  Google Scholar 

  15. Qu T, Guo W, Shen L, Xiao J, Zhao K (2011) Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind Eng Chem Res 50(18):10424–10433. doi:10.1021/ie1025453

    Article  Google Scholar 

  16. Raveendran K, Ganesh A, Khilar KC (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74(12):1812–1822

    Article  Google Scholar 

  17. Robert J, Evans TAM (1987) Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energy Fuel 1(2):123–137. doi:10.1021/ef00002a001

    Article  Google Scholar 

  18. Fahmi R, Bridgwater V, Darvell LI, Jones JM, Yates N, Thaind S, Donnisond IS (2007) The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel 86(10–11):1560–1569. doi:10.1016/j.fuel.2006.11.030

    Article  Google Scholar 

  19. Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87(7):1230–1240. doi:10.1016/j.fuel.2007.07.026

    Article  Google Scholar 

  20. Nik-Azar M, Hajaligol M, Sohrabi M, Dabir B (1997) Mineral matter effects in rapid pyrolysis of beech wood. Fuel Process Technol 3820(96). http://www.sciencedirect.com/science/article/pii/S0378382096010740. Accessed June 25, 2015

  21. Capablo J, Jensen PA, Pedersen KH, Hjuler K, Nikolaisen L, Backman R, Frandsen F (2009) Ash properties of alternative biomass. Energy Fuels 23(4):1965–1976. doi:10.1021/ef8008426

    Article  Google Scholar 

  22. Solantausta Y, Oasmaa A, Sipilä K, Lindfors C, Lehto J, Autio J, Jokela P, Alin J, Heiskanen J (2012) Bio-oil production from biomass: steps toward demonstration. Energy Fuels 26(1):233–240. doi:10.1021/ef201109t

    Article  Google Scholar 

  23. Ruddy DA, Schaidle JA, Ferrell JR III, Wang J, Moens L, Hensley JE (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16(2):454–490. doi:10.1039/C3GC41354C

    Article  Google Scholar 

  24. Galadima A, Muraza O (2015) In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Convers Manag 105:338–354

    Article  Google Scholar 

  25. Rezaei PS, Shafaghat H, Wan Daud WMA (2014) Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review. Appl Catal Gen 469:490–511. doi:10.1016/j.apcata.2013.09.036

    Article  Google Scholar 

  26. Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43(22):7594–7623. doi:10.1039/C3CS60414D

    Article  Google Scholar 

  27. Zhang H, Xiao R, Huang H, Xiao G (2009) Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol 100(3):1428–1434. doi:10.1016/j.biortech.2008.08.031

    Article  Google Scholar 

  28. Fan Y, Cai Y, Li X, Yu N, Yin H (2014) Catalytic upgrading of pyrolytic vapors from the vacuum pyrolysis of rape straw over nanocrystalline HZSM-5 zeolite in a two-stage fixed-bed reactor. J Anal Appl Pyrolysis 108:185–195. doi:10.1016/j.jaap.2014.05.001

    Article  Google Scholar 

  29. Mante OD, Rodriguez J, Senanayake SD, Babu SP (2015) Catalytic conversion of biomass pyrolysis vapors into hydrocarbon fuel precursors. Green Chem 17(4):2362–2368. doi:10.1039/C4GC02238F

    Article  Google Scholar 

  30. Williams PT, Horne PA (1995) The influence of catalyst regeneration on the composition of zeolite-upgraded biomass pyrolysis oils. Fuel 74(12):1839–1851. doi:10.1016/0016-2361(95)80017-C

    Article  Google Scholar 

  31. Jae J, Coolman R, Mountziaris TJ, Huber GW (2014) Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal. Chem Eng Sci 108:33–46. doi:10.1016/j.ces.2013.12.023

    Article  Google Scholar 

  32. Triantafyllidis KS, Iliopoulou EF, Antonakou EV, Lappas AA, Wang H, Pinnavaia TJ (2007) Hydrothermally stable mesoporous aluminosilicates (MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis. Microporous Mesoporous Mater 99(1–2):132–139. doi:10.1016/j.micromeso.2006.09.019

    Article  Google Scholar 

  33. Zubr J (1997) Oil-seed crop: Camelina sativa. Ind Crop Prod 6(2):113–119. doi:10.1016/S0926-6690(96)00203-8

    Article  Google Scholar 

  34. Budin JT, Breene WM, Putnam DH (1995) Some compositional properties of camelina (Camelina sativa L. Crantz) seeds and oils. J Am Oil Chem Soc 72(3):309–315. doi:10.1007/BF02541088

    Article  Google Scholar 

  35. Xu J, Jiang J, Zhao J (2016) Thermochemical conversion of triglycerides for production of drop-in liquid fuels. Renew Sust Energ Rev 58:331–340. doi:10.1016/j.rser.2015.12.315

    Article  Google Scholar 

  36. Kubicková I, Kubicka D (2010) Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: a review. Waste Biomass Valoriz 1(3):293–308. doi:10.1007/s12649-010-9032-8

    Article  Google Scholar 

  37. Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36(3):364–373. doi:10.1016/j.pecs.2009.11.004

    Article  Google Scholar 

  38. Malhi SS, Johnson EN, Hall LM, May WE, Phelps S, Nybo B (2014) Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa. Can J Soil Sci 94(1):35–47. doi:10.4141/cjss2012-086

    Article  Google Scholar 

  39. Gómez-Monedero B, Bimbela F, Arauzo J, Faria J, Ruiz MP (2015) Pyrolysis of red eucalyptus, camelina straw, and wheat straw in an ablative reactor. Energy Fuel 29(3):1766–1775. doi:10.1021/ef5026054

    Article  Google Scholar 

  40. Hernando H, Jiménez-Sánchez S, Fermoso J, Pizarro P, Coronado JM, Serrano DP (2016) Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels. Catal Sci Technol 6:2829–2843. doi:10.1039/C6CY00522E

    Article  Google Scholar 

  41. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58(16):9043–9053. doi:10.1021/jf1008023

    Article  Google Scholar 

  42. Banks SW, Bridgwater AV ( 2016) Catalytic fast pyrolysis for improved liquid quality. Handbook of biofuels production: processes and technologies. In: Luque R, Sze C, Lin K, Wilson K, Clark J (ed) 2nd. ed. Elsevier, 391–429

  43. Fermoso J, Hernando H, Jana P, Moreno I, Přech J, Ochoa-Hernández C, Pizarro P, Coronado JM, Čejka J, Serrano DP (2016) Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catal Today. Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus 277:171–181. doi:10.1016/j.cattod.2015.12.009

  44. Phyllis2 database for biomass and waste; ECN. No Title. 2012. https://www.ecn.nl/phyllis2

  45. Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. Ind. Eng. Chem Res 43:2610–2618. doi:10.1021/ie030791o

    Google Scholar 

  46. Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Olazar M, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, Ketones, and Acid. Ind Eng Chem Res 43:2619–2626. doi:10.1021/ie030792g

    Article  Google Scholar 

  47. Antal M, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640. doi:10.1021/ie0207919

    Article  Google Scholar 

  48. Hernando H, Jiménez-Sánchez S, Fermoso J, Pizarro P, Coronado JM, Serrano DP (2016) Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels. Catal Sci Technol J Name 0:1–3 www.rsc.org/catalysis

    Google Scholar 

  49. Cheng Y-T, Huber GW (2012) Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5. Green Chem 14(11):3114–3125. doi:10.1039/c2gc35767d

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the European Union Seventh Framework Programme (FP7/ 2007-2013) under grant agreement no. 604307 (CASCATBEL project) and the Spanish Ministry of Economy and Competitiveness Subprogram INNPACTO 2012 (IPT-2012-0219-120000).

CLARIANT is highly acknowledged for supplying HZSM-5 zeolite. Camelina Company España S.L. is acknowledged for supplying the camelina straw. CIEMAT (Spain), and in particular Dr. Ignacio Ballesteros, is acknowledged for assessing the biopolymers composition of the biomass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pizarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernando, H., Fermoso, J., Moreno, I. et al. Thermochemical valorization of camelina straw waste via fast pyrolysis. Biomass Conv. Bioref. 7, 277–287 (2017). https://doi.org/10.1007/s13399-017-0262-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-017-0262-x

Keywords

Navigation