Skip to main content

Advertisement

Log in

Optimizing GHG emission and energy-saving performance of miscanthus-based value chains

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

A Correction to this article was published on 24 April 2018

This article has been updated

Abstract

Miscanthus is a high-yielding lignocellulosic crop providing up to 40 t of dry matter per hectare and year. Its biomass can be used in energetic or material utilization pathways. The goal of this study was the comparison of three different conversion techniques (combustion, second-generation bioethanol, and insulation material) for miscanthus biomass produced at five locations throughout Europe using a life cycle assessment approach. In particular, the interdependencies between the cropping location, the miscanthus genotypes, and the utilization pathways were investigated. The potential savings of greenhouse gas (GHG) emissions and fossil energy were analyzed through comparison with a corresponding substituted product system. The highest GHG savings of all scenarios investigated were achieved by heat and power production in Portugal (42.7 t CO2-eq ha−1 a−1). However, at the other four locations (Sweden, Denmark, Germany, England), bioethanol production gave the highest GHG savings. In contrast, the highest energy savings were achieved by combined heat and power generation via combustion at all five locations (up to 642 GJ ha−1 a−1). A high correlation was found between yield and both GHG-emission savings and energy savings. Biomass composition and quality showed a comparatively low impact on the results. However, the composition is assumed to have a high relevance for other impact categories not assessed within this study, such as acidification and eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 24 April 2018

    Two significant errors were found in this article: In Table 1, due to a missing decimal point, Dry Matter Yields are displayed ten times too high. In Figure 2, the caption of the y-axis should read kg CO 2 -equivalents ha−1 a−1 instead of t CO 2 -equivalents ha−1 a−1.

References

  1. EK EK (2012) Klimaschutz, Energie für eine Welt im Wandel. http://ec.europa.eu/climateaction/eu_action/less_greenhouse_gases/index_de.htm. Accessed 15.03 2012

  2. FNR FNR (2012) Dämmstoffe. http://www.natur-baustoffe.info/daemmstoffe/.Accessed 16.04 2012

  3. Lewandowski I, Heinz A (2003) Delayed harvest of miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron 19(1):45–63

    Article  Google Scholar 

  4. Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30

    Article  Google Scholar 

  5. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  6. Tao G, Geladi P, Lestander TA, Xiong S (2012) Biomass properties in association with plant species and assortments. II: a synthesis based on literature data for ash elements. Renew Sust Energ Rev 16(5):3507–3522

    Article  Google Scholar 

  7. Mclaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14(4):317–324

    Article  Google Scholar 

  8. Long SP (1994) The application of physiological and molecular understanding of the effects of the environment on photosynthesis in the selection of novel “fuel” crops; with particular reference to C4 perennials. In: Struick PC, Vredenberg W, Renkema JA, Parlevet JE (eds) Plant production on the threshold of a new century-congress of the 75th anniversary of Wageningen agricultural university. Kluwer Academic, Dordrecht, pp. 231–244

    Chapter  Google Scholar 

  9. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz K-U, Tayebi K, Teixeira F (2011) Performance of 15 miscanthus genotypes at five sites in Europe. Agron J 93(5):1013–1019

    Article  Google Scholar 

  10. Lee KH, Isenhart TM, Schultz RC, Mickelson SK (2000) Multispecies riparian buffers trap sediment and nutrients during rainfall simulations. J Environ Qual 29(4):1200–1205

    Article  Google Scholar 

  11. Bullard M (2001) Economics of miscanthus production. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, pp. 155–171

    Google Scholar 

  12. Kahle P, Beuch S, Boelcke B, Leinweber P, Schulten HR (2001) Cropping of miscanthus in central Europe: biomass and influence on nutrients and soil organic matter. Eur J Agron 15:171–194

    Article  Google Scholar 

  13. Gauder M, Graeff-Hönninger S, Lewandowski I, Claupein W (2011) Long-term yield and performance of 15 different miscanthus genotypes in Southwest Germany. Ann Appl Biol 160(2):126–136

    Article  Google Scholar 

  14. Hodgson EM, Lister SJ, Bridgwater AV, Clifton-Brown J, Donnison IS (2010) Genotypic and environmentally derived variation in the cell wall composition of miscanthus in relation to its use as a biomass feedstock. Biomass Bioenergy 34(3):652–660

    Article  Google Scholar 

  15. Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jørgensen U, Jones MB, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2003) Environment and harvest time affects the combustion qualities of miscanthus genotypes. Agron J 95(5):1274–1280

    Article  Google Scholar 

  16. Jorgensen U, Muhs H-J (2001) Miscanthus breeding and improvement. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James and James, London

    Google Scholar 

  17. Obernberger I (1997) Stand und Entwicklung der Verbrennungstechnik. VDI Ber 1319:47–80

    Google Scholar 

  18. Propheter JL, Staggenborg SA, Wu X, Wang D (2010) Performance of annual and perennial biofuel crops: yield during the first two years. Agron J 102(2):806–814

    Article  Google Scholar 

  19. Rawe BA (2008) Breakthroughs and challenges in the production of cellulosic ethanol. MMG 445. Basic Biotechnology eJournal 4:10–15

    Google Scholar 

  20. Lewandowski I, Kicherer A, Vonier P (1995) CO2-balance for the cultivation and combustion of miscanthus. Biomass Bioenergy 8(2):81–90

    Article  Google Scholar 

  21. GaBi (2012) GaBi Database. Pe International

  22. Zan CS, Fyles JW, Girouard P, Samson RA (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agric Ecosyst Environ 86(2):135–144

    Article  Google Scholar 

  23. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209–227

    Article  Google Scholar 

  24. Obernberger I, Hammerschmid A, Bini R (2001) Biomasse Kraft-Wärme-Kopplung auf Basis des ORC-Prozesses—EU-THERMIE-Projekt Admont (A). VDI-Gesellschaft Energietechnik. http://www.bios-bioenergy.at/uploads/media/Paper-Obernberger-ORCAdmont-VDI-2001-04-15.pdf. Accessed 17.04 2012

  25. Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28:499–507

    Article  Google Scholar 

  26. Hofbauer H, Kaltschmitt M, Nussbaumer T, Hartmann H, Obernberger I (2009) Grundlagen der thermo-chemischen Umwandlung biogener Festbrennstoffe. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse—Grundlagen, Techniken und Verfahren. Springer-Verlag, Berlin

    Google Scholar 

  27. Obernberger I (2009) Feste Konversionsrückstände und deren Verwertung. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse—Grundlagen, Techniken und Verfahren. Springer-Verlag, Berlin

    Google Scholar 

  28. Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz K-U, Tayebi K, Teixeira F (2000) European Miscanthus Improvement.

  29. Sommersacher P, Thomas Brunner T, Obernberger I (2012) Fuel indexes: a novel method for the evaluation of relevant combustion properties of new biomass fuels. Energy Fuel 26(1):380–390

    Article  Google Scholar 

  30. Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J (2005) Weak lignin-binding enzymes: a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Applied Biochemistry and Biotechnology—Part A: Enzyme Engineering and Biotechnology 121(1–3):163–170

    Article  Google Scholar 

  31. Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100(4):1515–1523

    Article  Google Scholar 

  32. Kumar D, Murthy GS (2012) Life cycle assessment of energy and GHG emissions during ethanol production from grass straws using various pretreatment processes. The International Journal of Life Cycle Assessment 4(17):388–401

    Article  Google Scholar 

  33. Pawelzik PF, Zhang Q (2012) Evaluation of environmental impacts of cellulosic ethanol using life cycle assessment with technological advances over time. Biomass Bioenergy 40:162–173. doi:10.1016/j.biombioe.2012.02.014

    Article  Google Scholar 

  34. Nielsen PH, Oxenbøll KM, Wenzel H (2007) Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes a/S. The International Journal of Life Cycle Assessment 12(6):432–438

    Article  Google Scholar 

  35. Sánchez-Segado S, Lozano LJ, de Juan GD, Godínez C, de los Rios AP, Hernández-Fernández FJ (2012) Life cycle assessment analysis of ethanol production from carob pod. Chem Eng Trans 21:613–618

    Google Scholar 

  36. Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 130(1–3):496–508

    Article  Google Scholar 

  37. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  Google Scholar 

  38. Graboski M, Bain R (1981) Properties of biomass relevant to gasification. In: Reed TB (ed) Biomass gasification: principles and technology. Noyes Data Corporation, Park Ridge, New Jersey

  39. Uihlein A, Ehrenberger S, Schebek L (2008) Utilisation options of renewable resources: a life cycle assessment of selected products. J Clean Prod 16:1306–1320

    Article  Google Scholar 

  40. GmbH PMDuH (2012) Telefonische Auskunft des Produktionsleiters der Firma MEHA Dämmstoffe und Handels GmbH, Schifferstadt.

  41. Rivela B, Moreira MT, Feijoo G (2007) Life cycle inventory of medium density fibreboard. Int J Life Cycle Assess 12(3):143–150

    Article  Google Scholar 

  42. da Costa SL, Chundawat SP, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20(3):339–347

    Article  Google Scholar 

  43. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  Google Scholar 

  44. Jeswani HK, Falano T, Azapagic A (2015) Life cycle environmental sustainability of lignocellulosic ethanol produced in integrated thermo-chemical biorefineries. Biofuels Bioprod Biorefin 9:661–676

    Article  Google Scholar 

  45. IPCC (2006) N2O-emissions from managed soils and CO2-emissions from lime and urea application. http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch11_N2O&CO2.pdf. Accessed 13.05.2012

  46. Iqbal Y, Lewandowski I (2014) Inter-annual variation in biomass combustion quality traits over five years in fifteen miscanthus genotypes in South Germany. Fuel Process Technol 121:47–55. doi:10.1016/j.fuproc.2014.01.003

    Article  Google Scholar 

  47. Arundale RA, Dohleman FG, Heaton EA, Mcgrath JM, Voigt T, Long SP (2014) Yields of miscanthus × giganteus and Panicum virgatum decline with stand age in the midwestern USA. Global Change Biology Bioenergy 6(1):1–13

    Article  Google Scholar 

  48. Iqbal Y, Gauder M, Claupein W, Graeff-Hönninger S, Lewandowski I (2015) Yield and quality development comparison between miscanthus and switchgrass over a period of 10 years. Energy 89:268–276. doi:10.1016/j.energy.2015.05.134

    Article  Google Scholar 

  49. Arundale RA, Dohleman FG, Voigt TB, Long SP (2014) Nitrogen fertilization does significantly increase yields of stands of Miscanthus × giganteus and Panicum virgatum in multiyear trials in Illinois. BioEnergy Research 7:408–416

    Article  Google Scholar 

  50. Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327

    Article  Google Scholar 

  51. Powlson DS, Whitmore KW, Goulding WT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62(1):42–55

    Article  Google Scholar 

  52. Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, miscanthus. Glob Chang Biol 13:2296–2307

    Article  Google Scholar 

  53. Prasad A, Sotenko M, Blenkinsopp T, Coles SR (2016) Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int J Life Cycle Assess 21(1):44–50

    Article  Google Scholar 

  54. Dornburg V, Lewandowski I, Patel M (2003) Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergy. J Ind Ecol 7(3–4):93–116

    Article  Google Scholar 

  55. Lewandowski I, Kicherer A (1997) Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur J Agron 6:163–177

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank thinkstep AG for their support in the compilation of the manuscript. Our thanks also go to Nicole Gaudet for helping to improve the language quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Meyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, F., Wagner, M. & Lewandowski, I. Optimizing GHG emission and energy-saving performance of miscanthus-based value chains. Biomass Conv. Bioref. 7, 139–152 (2017). https://doi.org/10.1007/s13399-016-0219-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-016-0219-5

Keywords

Navigation