Skip to main content
Log in

Surface Functionalization of Indium Tin Oxide Electrodes by Self-assembled Monolayers for Direct Assembly of Pre-synthesized SnO2 Nanocrystals as Electron Transport Layers

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, a (3-aminopropyl) triethoxysilane (APTES) monolayer was used as an adhesion promoter to assemble pre-synthesized SnO2 nanocrystal (NC) arrays for use as electron transport layers (ETLs) in perovskite solar cells. The self-assembled monolayers on indium tin oxide (ITO) bottom electrodes interact with the SnO2 NCs via covalent bonding during the spin-coating process, leading to the formation of pinhole-free SnO2 NC layers, which enabled the growth of perovskite films with uniform microstructures. The device performance analyses showed that the resulting photovoltaic efficiency significantly increased from 10.68% to 15.52% with the use of the APTES monolayer. This increase in the photovoltaic efficiency can be attributed to the reduction in defects at the ETL/perovskite interface and in the bulk. This paper presents a facile, robust, and effective strategy to improve the grafting of SnO2 NCs on flat ITO substrates by using APTES, and thus, increase the quality of the ETL/perovskite interfacial structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Min, H., Lee, D.Y., Kim, J., Kim, G., Lee, K.S., Kim, J., Paik, M.J., Kim, Y.K., Kim, K.S., Kim, M.G., Shin, T.J., Il Seok, S.: Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature (2021). https://doi.org/10.1038/s41586-021-03964-8

    Article  Google Scholar 

  2. Yang, D., Yang, R., Wang, K., Wu, C., Zhu, X., Feng, J., Ren, X., Fang, G., Priya, S., Liu, S.: High efficiency planar-type perovskite solar cells with negligible hysteresis using edta-complexed SnO2. Nat. Commun. 45, 4561 (2018). https://doi.org/10.1038/s41467-018-05760-x

    Article  CAS  Google Scholar 

  3. Ke, W., Fang, G., Liu, Q., Xiong, L., Qin, P., Tao, H., Wang, J., Lei, H., Li, B., Wan, J., Yang, G., Yan, Y.: Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. (2015). https://doi.org/10.1021/jacs.5b01994

    Article  Google Scholar 

  4. Correa Baena, J.P., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T.J., Srimath Kandada, A.R., Zakeeruddin, S.M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Grätzel, M., Hagfeldt, A.: Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. (2015). https://doi.org/10.1039/c5ee02608c

    Article  Google Scholar 

  5. Bu, T., Shi, S., Li, J., Liu, Y., Shi, J., Chen, L., Liu, X., Qiu, J., Ku, Z., Peng, Y., Zhong, J., Cheng, Y.B., Huang, F.: Low-temperature presynthesized crystalline tin oxide for efficient flexible perovskite solar cells and modules. ACS Appl. Mater. Interface (2018). https://doi.org/10.1021/acsami.8b02624

    Article  Google Scholar 

  6. Petri, D.F.S.: Characterization of spin-coated polymer films. J. Braz. Chem. Soc. (2002). https://doi.org/10.1590/S0103-50532002000500027

    Article  Google Scholar 

  7. Acres, R.G., Ellis, A.V., Alvino, J., Lenahan, C.E., Khodakov, D.A., Metha, G.F., Andersson, G.G.: Molecular structure of 3-Aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J. Phys. Chem. C (2012). https://doi.org/10.1021/jp212056s

    Article  Google Scholar 

  8. Dong, Q., Shi, Y., Wang, K., Li, Y., Wang, S., Zhang, H., Xing, Y., Du, Y., Bai, X., Ma, T.: Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J. Phys. Chem. C (2015). https://doi.org/10.1021/acs.jpcc.5b00541

    Article  Google Scholar 

  9. Zhu, Z., Bai, Y., Liu, X., Chueh, C.C., Yang, S., Jen, A.K.Y.: Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv. Mater. (2016). https://doi.org/10.1002/adma.201600619

    Article  Google Scholar 

  10. Dong, Q., Shi, Y., Zhang, C., Wu, Y., Wang, L.: Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy (2017). https://doi.org/10.1016/j.nanoen.2017.08.041

    Article  Google Scholar 

  11. Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Zhang, X., You, J.: Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2 PbI3-based perovskite solar cells. Nat. Energy (2017). https://doi.org/10.1038/nenergy.2016.177

    Article  Google Scholar 

  12. Han, G.S., Kim, J., Bae, S., Han, S., Kim, Y.J., Gong, O.Y., Lee, P., Ko, M.J., Jung, H.S.: Spin-coating process for 10 cm × 10 cm perovskite solar modules enabled by self-assembly of SnO2 nanocolloids. ACS Energy Lett. (2019). https://doi.org/10.1021/acsenergylett.9b00953

    Article  Google Scholar 

  13. Anaraki, E.H., Kermanpur, A., Steier, L., Domanski, K., Matsui, T., Tress, W., Saliba, M., Abate, A., Grätzel, M., Hagfeldt, A., Correa-Baena, J.P.: Highly Efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. (2016). https://doi.org/10.1039/c6ee02390h

    Article  Google Scholar 

  14. Bai, Y., Fang, Y., Deng, Y., Wang, Q., Zhao, J., Zheng, X., Zhang, Y., Huang, J.: Low temperature solution-processed Sb:SnO2 nanocrystals for efficient planar perovskite solar cells. Chemsuschem (2016). https://doi.org/10.1002/cssc.201600944

    Article  Google Scholar 

  15. Lin, C.C., Murakami, T.N., Chikamatsu, M., Bessho, T., Furue, M., Segawa, H.: A sodium chloride modification of SnO2 electron transport layers to enhance the performance of perovskite solar cells. ACS Omega (2021). https://doi.org/10.1021/acsomega.1c01286

    Article  Google Scholar 

  16. Sun, Q., Li, H., Gong, X., Ban, H., Shen, Y., Wang, M.: Interconnected SnO2 nanocrystals electron transport layer for highly efficient flexible perovskite solar cells. Sol. RRL (2020). https://doi.org/10.1002/solr.201900229

    Article  Google Scholar 

  17. Jo, J.W., Yoo, Y., Jeong, T., Ahn, S., Ko, M.J.: Low‑Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells. Electron. Mater. Lett. (2018). https://doi.org/10.1007/s13391-018-0073-7

  18. Liu, K., Chen, S., Wu, J., Zhang, H., Qin, M., Lu, X., Tu, Y., Meng, Q., Zhan, X.: Fullerene derivative anchored SnO2 for high-performance perovskite solar cells. Energy Environ. Sci. (2018). https://doi.org/10.1039/c8ee02172d

    Article  Google Scholar 

  19. Huang, C., Lin, P., Fu, N., Sun, K., Ye, M., Liu, C., Zhou, X., Shu, L., Hao, X., Xu, B., Zeng, X., Wang, Y., Ke, S.: Ionic liquid modified SnO2 nanocrystals as a robust electron transporting layer for efficient planar perovskite solar cells. J. Mater. Chem. A (2018). https://doi.org/10.1039/c8ta04131h

    Article  Google Scholar 

  20. Abuhelaiqa, M., Paek, S., Lee, Y., Cho, K.T., Heo, S., Oveisi, E., Huckaba, A.J., Kanda, H., Kim, H., Zhang, Y., Humphry-Baker, R., Kinge, S., Asiri, A.M., Nazeeruddin, M.K.: Stable perovskite solar cells using tin acetylacetonate based electron transporting layers. Energy Environ. Sci. (2019). https://doi.org/10.1039/c9ee00453j

    Article  Google Scholar 

  21. Lee, J.S., Cho, J., Lee, C., Kim, I., Park, J., Kim, Y.M., Shin, H., Lee, J., Caruso, F.: Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. Nat. Nanotechnol. (2007). https://doi.org/10.1038/nnano.2007.380

    Article  Google Scholar 

  22. Lee, C., Kwon, J.H., Lee, J.S., Kim, Y.M., Choi, Y., Shin, H., Lee, J., Sohn, B.H.: Nonvolatile nanocrystal charge trap flash memory devices using a micellar route to ordered arrays of cobalt nanocrystals. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2798502

    Article  Google Scholar 

  23. Lee, J.S., Kim, Y.M., Kwon, J.H., Shin, H., Sohn, B.H., Lee, J.: Tunable memory characteristics of nanostructured, Nonvolatile charge trap memory devices based on a binary mixture of metal nanoparticles as a charge trapping layer. Adv. Mater. (2009). https://doi.org/10.1002/adma.200800340

    Article  Google Scholar 

  24. Park, H., Kim, A., Lee, C., Lee, J.S., Lee, J.: Formation of Cu nanocrystals on 3-Mercaptopropyltrimethoxysilane monolayer by pulsed iodine-assisted chemical vapor deposition for nonvolatile memory applications. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3139072

    Article  Google Scholar 

  25. Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., Libchaber, A.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science (2002). https://doi.org/10.1126/science.1077194

    Article  Google Scholar 

  26. Noblet, T., Boujday, S., Méthivier, C., Erard, M., Hottechamps, J., Busson, B., Humbert, C.: Two-dimensional layers of colloidal CdTe quantum dots: assembly, optical properties, and vibroelectronic coupling. J. Phys. Chem. C (2020). https://doi.org/10.1021/acs.jpcc.0c08191

    Article  Google Scholar 

  27. Khalid, W., El Helou, M., Murböck, T., Yue, Z., Montenegro, J.M., Schubert, K., Göbel, G., Lisdat, F., Witte, G., Parak, W.J.: Immobilization of quantum dots via conjugated self-assembled monolayers and their application as a light-controlled sensor for the detection of hydrogen peroxide. ACS Nano (2011). https://doi.org/10.1021/nn2035582

    Article  Google Scholar 

  28. Lee, W.S., Jeon, S., Oh, S.J.: Wearable sensors based on colloidal nanocrystals. Nano Converg. (2019). https://doi.org/10.1186/s40580-019-0180-7

    Article  Google Scholar 

  29. Yang, G., Chen, C., Yao, F., Chen, Z., Zhang, Q., Zheng, X., Ma, J., Lei, H., Qin, P., Xiong, L., Ke, W., Li, G., Yan, Y., Fang, G.: Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells. Adv. Mater. (2018). https://doi.org/10.1002/adma.201706023

    Article  Google Scholar 

  30. Wei, J., Guo, F., Wang, X., Xu, K., Lei, M., Liang, Y., Zhao, Y., Xu, D.: SnO2-in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability. Adv. Mater. (2018). https://doi.org/10.1002/adma.201805153

    Article  Google Scholar 

  31. Lee, H., Kim, H.J.: Nanoimprinting of perovskite layer for light-harvesting effect in photovoltaic devices. Electron. Mater. Lett. 18: 407–414(2022)

  32. Kim, T., Chu, Y. H., Lee, J., Cho, S. H., Kim, S., Bang, K., Lee, H., Lim, C., Lee, Y. S.: Confined growth of high-quality single crystal MAPbBr3 by inverse temperature crystallization for photovoltaic applications. Electron. Mater. Lett. 17: 347–354(2021)

  33. Suzuki, A., Kitagawa, K., Oku, T., Okita, M., Fukunishi, S., Tachikawa, T.: Additive Effects of Copper and Alkali Metal Halides into Methylammonium Lead Iodide Perovskite Solar Cells. Electron. Mater. Lett. 18: 176–186(2022)

  34. Pasternack, R.M., Amy, S.R., Chabal, Y.J.: Attachment of 3-(Aminopropyl) triethoxysilane on Silicon Oxide Surfaces: dependence on solution temperature. Langmuir (2008). https://doi.org/10.1021/la8024827

    Article  Google Scholar 

  35. Hijazi, M., Stambouli, V., Rieu, M., Barnier, V., Tournier, G., Demes, T., Viricelle, J.P., Pijolat, C.: Synthesis and characterization of tin dioxide thick film modified by APTES in vapor and liquid phases. J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-017-1541-4

    Article  Google Scholar 

  36. Mercier, D., Rouchaud, J.C., Barthés-Labrousse, M.G.: Interaction of Amines with native aluminium oxide layers in non-aqueous environment: application to the understanding of the formation of epoxy-amine/metal interphases. Appl. Surf. Sci. (2008). https://doi.org/10.1016/j.apsusc.2008.04.010

    Article  Google Scholar 

  37. Vandenberg, E.T., Bertilsson, L., Liedberg, B., Uvdal, K., Erlandsson, R., Elwing, H., Lundström, I.: Structure of 3-Aminopropyl triethoxy silane on silicon oxide. J. Colloid Interface Sci. (1991). https://doi.org/10.1016/0021-9797(91)90139-Y

    Article  Google Scholar 

  38. Bouazizi, N., Vieillard, J., Samir, B., Derf, F.L.: Advances in amine-surface functionalization of inorganic adsorbents for water treatment and antimicrobial activities: a review. Polym. (Basel) (2022). https://doi.org/10.3390/polym14030378

    Article  Google Scholar 

  39. Moulder, J.H., Stickle, W.F., Sobol, P.E., Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Waltham (1992)

    Google Scholar 

  40. Scofield, J.H.: Hartree-slater subshell photoionization cross-sections at 1254 and 1487 EV. J. Electron Spectros. Relat. Phenomena (1976). https://doi.org/10.1016/0368-2048(76)80015-1

    Article  Google Scholar 

  41. Tanuma, S., Powell, C.J., Penn, D.R.: Calculations of Electron Inelastic Mean Free Paths. IX. Data for 41 Elemental Solids over the 50 EV to 30 KeV Range. Surf. Interface Anal. (2011). https://doi.org/10.1002/sia.3522

    Article  Google Scholar 

  42. Cumpson, P.J.: Estimation of inelastic mean free paths for polymers and other organic materials: use of quantitative structure-property relationships. Surf. Interface Anal. (2001). https://doi.org/10.1002/sia.948

    Article  Google Scholar 

  43. Song, K., Zou, X., Zhang, H., Zhang, C., Cheng, J., Liu, B., Yao, Y., Wang, X., Li, X., Wang, Y., Ren, B.: Effect of Sno2 colloidal dispersion solution concentration on the quality of perovskite layer of solar cells. Coatings (2021). https://doi.org/10.3390/coatings11050591

    Article  Google Scholar 

  44. Jung, Y., Joseph Kline, R., Fischer, D.A., Kline, R.J., Heeney, M., McCulloch, L., DeLongchamp, D.M.: The effect of interfacial roughness on the thin film morphology and charge transport of high-performance polythiophenes. Adv. Funct. Mater. (2008). https://doi.org/10.1002/adfm.200701089

    Article  Google Scholar 

  45. Sirringhaus, H.: Device physics of solution-processed organic field-effect transistors. Adv. Mater. (2005). https://doi.org/10.1002/adma.200501152

    Article  Google Scholar 

  46. Kim, H.-S., Park, N.-G.: Correction to “parameters affecting I – V hysteresis of CH3 NH3 PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer.” J. Phys. Chem. Lett. (2014). https://doi.org/10.1021/jz502009r

    Article  Google Scholar 

  47. Sanchez, R.S., Gonzalez-Pedro, V., Lee, J.W., Park, N.G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 123, 4568 (2014). https://doi.org/10.1021/jz5011187

    Article  CAS  Google Scholar 

  48. Zheng, H., Wang, Y., Niu, B., Ge, R., Lei, Y., Yan, L., Si, J., Zhong, P., Ma, X.: Controlling the defect density of perovskite films by MXene/SnO2 hybrid electron transport layers for efficient and stable photovoltaics. J. Phys. Chem. C (2021). https://doi.org/10.1021/acs.jpcc.1c04361

    Article  Google Scholar 

  49. Wang, Q., Dong, Q., Li, T., Gruverman, A., Huang, J.: Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. (2016). https://doi.org/10.1002/adma.201600969

    Article  Google Scholar 

  50. Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., Yamamoto, K.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy (2017). https://doi.org/10.1038/nenergy.2017.32

    Article  Google Scholar 

  51. Huang, L., Bu, S., Zhang, D., Peng, R., Wei, Q., Ge, Z., Zhang, J.: Schottky/p-n cascade heterojunction constructed by intentional n-type doping perovskite toward efficient electron layer-free perovskite solar cells. Sol. RRL (2019). https://doi.org/10.1002/solr.201800274

    Article  Google Scholar 

  52. Sheikh, M.A.K., Singh, S., Abdur, R., Lee, S.M., Kim, J.H., Nam, H.S., Lee, H., Lee, J.: Effects of the PbBr2:PbI2 molar ratio on the formation of lead halide thin films, and the ratio’s application for high performance and wide bandgap solar cells. Mater. (Basel) (2022). https://doi.org/10.3390/ma15030837

    Article  Google Scholar 

  53. Zhu, D., Xu, J., Noemaun, A.N., Kim, J.K., Schubert, E.F., Crawford, M.H., Koleske, D.D.: The origin of the high diode-ideality factors in gainn/gan multiple quantum well light-emitting diodes. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3089687

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant Number: 2022R1A5A7000765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaegab Lee.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Abdur, R., Nam, HS. et al. Surface Functionalization of Indium Tin Oxide Electrodes by Self-assembled Monolayers for Direct Assembly of Pre-synthesized SnO2 Nanocrystals as Electron Transport Layers. Electron. Mater. Lett. 19, 267–277 (2023). https://doi.org/10.1007/s13391-022-00403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00403-2

Keywords

Navigation