Skip to main content
Log in

The Effects of Electrostatic Interactions on Abnormal Growth of Particles Deposited by Charged Nanoparticles During Chemical Vapor Deposition of Silicon

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We used kinetic Monte Carlo (kMC) simulations to investigate the development over time of a non-classical crystallization system featuring many charged nanoparticles (CNPs) in the gas phase; we studied the abnormal growth of deposited silicon (Si) particles during chemical Si vapor deposition. We identified three parameters associated with abnormal growth of deposited CNPs. The kMC results revealed that abnormal, deposited CNP growth was accentuated when the CNP charge in the gas phase was balanced. In addition, a high CNP density (an elevated particle volume fraction) in the gas phase favored abnormal growth of deposited CNPs, as did a faster gas flow velocity, even when the charge signs of CNPs in the gas phase were not balanced.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hartman, P.: Crystal Growth: an Introduction. North-Holland (1973)

  2. Van Der Eerden, J.: Handbook of Crystal Growth Vol. 1a: Bulk Fundamentals, Growth Thermodynamics and Kinetics ed DTJ Hurle. Amsterdam: North-Holland (1994)

  3. De Yoreo, J.J., Vekilov, P.G.: Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54(1), 57–93 (2003)

    Article  Google Scholar 

  4. Hwang, N.-M., Kim, D.-Y.: Charged clusters in thin film growth. Int. Mater. Rev. 49(3–4), 171–190 (2004)

    Article  CAS  Google Scholar 

  5. Cöelfen, H., Antonietti, M.: Mesocrystals and Nonclassical Crystallization. Wiley, New York (2008)

    Book  Google Scholar 

  6. Zhang, Q., Liu, S.-J., Yu, S.-H.: Recent advances in oriented attachment growth and synthesis of functional materials: Concept, evidence, mechanism, and future. J. Mater. Chem. 19(2), 191–207 (2009)

    Article  CAS  Google Scholar 

  7. Gebauer, D., Cölfen, H.: Prenucleation clusters and non-classical nucleation. Nano Today 6(6), 564–584 (2011)

    Article  CAS  Google Scholar 

  8. Liao, H.-G., Cui, L., Whitelam, S., Zheng, H.: Real-time imaging of \({{\rm Pt}}_3{{\rm Fe}}\) nanorod growth in solution. Science 336(6084), 1011–1014 (2012)

    Article  CAS  Google Scholar 

  9. Tang, Z., Kotov, N.A., Giersig, M.: Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297(5579), 237–240 (2002)

    Article  CAS  Google Scholar 

  10. Yuk, J.M., Jeong, M., Kim, S.Y., Seo, H.K., Kim, J., Lee, J.Y.: In situ atomic imaging of coalescence of Au nanoparticles on graphene: rotation and grain boundary migration. Chem. Commun. 49(98), 11479–11481 (2013)

    Article  CAS  Google Scholar 

  11. Sutter, E., Sutter, P., Tkachenko, A.V., Krahne, R., De Graaf, J., Arciniegas, M., Manna, L.: In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat. Commun. 7(1), 1–7 (2016)

    Article  Google Scholar 

  12. Leite, E.R., Ribeiro, C.: Crystallization and Growth of Colloidal Nanocrystals. Springer, Berlin (2011)

    Google Scholar 

  13. Niederberger, M., Cölfen, H.: Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8(28), 3271–3287 (2006)

    Article  CAS  Google Scholar 

  14. Ivanov, V.K., Fedorov, P.P., Baranchikov, A.Y., Osiko, V.V.: Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russ. Chem. Rev. 83(12), 1204 (2014)

    Article  CAS  Google Scholar 

  15. Jin, B., Liu, Z., Tang, R.: Recent experimental explorations of non-classical nucleation. CrystEngComm 22(24), 4057–4073 (2020)

    Article  CAS  Google Scholar 

  16. Pan, H., Tang, R.: Towards an understanding of crystallization by attachment. Crystals 10(6), 463 (2020)

    Article  CAS  Google Scholar 

  17. Yoshida, T.: Vapour phase deposition of cubic boron nitride. Diamond Relat. Mater. 5(3–5), 501–507 (1996)

    Article  CAS  Google Scholar 

  18. Cabarrocas, P.R.: Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films. J. Non-Cryst. Solids 266, 31–37 (2000)

    Article  Google Scholar 

  19. Zhang, C., Anovitz, L.M., Patterson, J.P., Rakowski, A.M., Le, S., Lu, X., Nie, X., Zong, M., Dong, F., Ogata, A.F., et al.: Crystallization Via Nonclassical Pathways Volume 1: Nucleation, Assembly, Observation & Application. American Chemical Society, Washington (2020)

    Book  Google Scholar 

  20. Zhang, X., Christine, V.P., Lijun, W.: Crystallization Via Nonclassical Pathways Volume 2: Aggregation, Biomineralization, Imaging & Application. American Chemical Society, Washington (2021)

    Book  Google Scholar 

  21. Hwang, N.M.: Non-classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes. Springer, Berlin (2016)

    Book  Google Scholar 

  22. Hwang, N.-M., Lee, D.-K.: Charged nanoparticles in thin film and nanostructure growth by chemical vapour deposition. J. Phys. D: Appl. Phys. 43(48), 483001 (2010)

    Article  Google Scholar 

  23. Kim, C.-S., Kwak, I.-J., Choi, K.-J., Park, J.-G., Hwang, N.-M.: Generation of charged nanoparticles during the synthesis of silicon nanowires by chemical vapor deposition. J. Phys. Chem. C 114(8), 3390–3395 (2010)

    Article  CAS  Google Scholar 

  24. Jung, J.-S., Lee, S.-H., Kim, D.-S., Kim, K.-S., Park, S.-W., Hwang, N.-M.: Non-classical crystallization of silicon thin films during hot wire chemical vapor deposition. J. Cryst. Growth 458, 8–15 (2017)

    Article  CAS  Google Scholar 

  25. Park, S.-H., Park, J.-W., Yang, S.-M., Kim, K.-H., Hwang, N.-M.: Effect of electric bias on the deposition behavior of ZnO nanostructures in the chemical vapor deposition process. J. Phys. Chem. C 119(44), 25047–25052 (2015)

    Article  CAS  Google Scholar 

  26. Kim, D.-S., Hwang, N.-M.: Synthesis of nanostructures using charged nanoparticles spontaneously generated in the gas phase during chemical vapor deposition. J. Phys. D: Appl. Phys. 51(46), 463002 (2018)

    Article  Google Scholar 

  27. Park, S.-W., Jang, G.-S., Kim, K.-S., Hwang, N.-M.: Comparison of plasma effect on dewetting kinetics of Sn films between grounded and floating substrates. Electron. Mater. Lett. 16(1), 72–80 (2020)

    Article  CAS  Google Scholar 

  28. Kim, D., Kim, D.Y., Kwon, J.H., Kim, K.-S., Hwang, N.-M.: Generation of charged SiC nanoparticles during HWCVD process. Electron. Mater. Lett. 16(5), 498–505 (2020)

    Article  CAS  Google Scholar 

  29. Lee, Y., Han, H.N., Kim, W., Hwang, N.M.: Effect of bipolar charging of SiH\(_4\) on the growth rate and crystallinity of silicon films grown in the atmospheric pressure chemical vapor deposition process. Electron. Mater. Lett. 16(4), 385–395 (2020)

    Article  CAS  Google Scholar 

  30. Kumomi, H., Yonehara, T.: Coarsening phenomenon of Si clusters on artificial nucleation sites. Appl. Phys. Lett. 54(26), 2648–2650 (1989)

    Article  CAS  Google Scholar 

  31. Kumomi, H., Yonehara, T., Nishigaki, Y., Sato, N.: Selective nucleation based epitaxy (SENTAXY): investigation of initial nucleation stages. Appl. Surf. Sci. 41, 638–642 (1990)

    Article  Google Scholar 

  32. Kumomi, H., Yonehara, T.: Coarsening phenomenon of Si clusters. Mater. Res. Soc. Symp. Proc. 202 (1990)

  33. Hwang, N.M.: Deposition and simultaneous etching of Si in the chemical vapor deposition (CVD) process: approach by the charged cluster model. J. Cryst. Growth 205(1–2), 59–63 (1999)

    Article  CAS  Google Scholar 

  34. Lekner, J.: Electrostatics of two charged conducting spheres. Proc. Math. Phys. Eng. Sci. 468(2145), 2829–2848 (2012)

    Google Scholar 

  35. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (2007)

    Google Scholar 

  36. Byun, M.G., Yang, J.W., Park, J.H., Hwang, N.M., Park, J., Yu, B.D.: Effects of electrostatic interaction on the formation of a particle depletion zone by charged nanoparticles during the chemical vapor deposition of Si processes. Cryst. Growth Des. 22(4), 2490–2498 (2022)

    Article  CAS  Google Scholar 

  37. Zhang, R., Jha, P.K., De La Cruz, M.O.: Non-equilibrium ionic assemblies of oppositely charged nanoparticles. Soft Matter 9(20), 5042–5051 (2013)

    Article  CAS  Google Scholar 

  38. Singh, K., Raghav, A., Jha, P.K., Satapathi, S.: Effect of size and charge asymmetry on aggregation kinetics of oppositely charged nanoparticles. Sci. Rep. 9(1), 1–8 (2019)

    Google Scholar 

  39. Jha, P.K., Kuzovkov, V., Grzybowski, B.A., De La Cruz, M.O.: Dynamic self-assembly of photo-switchable nanoparticles. Soft Matter 8(1), 227–234 (2012)

    Article  CAS  Google Scholar 

  40. Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4(2), 294–307 (1963)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIT) (No. NRF-2013M3A6B1078874), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A5A6017701), BK21PLUS SNU Materials Division for Educating Creative Global Leaders (21A20131912052), and Samsung Electronics Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Moon Hwang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, M.G., Park, J.H., Yang, J.W. et al. The Effects of Electrostatic Interactions on Abnormal Growth of Particles Deposited by Charged Nanoparticles During Chemical Vapor Deposition of Silicon. Electron. Mater. Lett. 19, 218–228 (2023). https://doi.org/10.1007/s13391-022-00390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00390-4

Keywords

Navigation