Skip to main content
Log in

Highly Conductive, Flexible, and Robust Silver Nanowire-Embedded Carboxymethyl Cellulose/Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Composite Films for Wearable Heaters and On-Skin Sensors

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Highly conductive, flexible, and durable silver nanowire (AgNW)-embedded carboxymethyl cellulose (CMC)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (s-CMC/PEDOT:PSS) composite films were investigated for application in wearable heaters and on-skin sensors. The electrical conductivities of the CMC/PEDOT:PSS composites were optimized by controlling the PEDOT:PSS weight ratio in CMC, and the sheet resistance decreased significantly from 6828 (CMC:PEDOT:PSS = 1:5) to 83 Ω/sq (CMC:PEDOT:PSS = 1:17). Furthermore, AgNW networks were embedded onto the surface of the CMC/PEDOT:PSS films to further enhance their conductivity. The introduction of AgNW networks resulted in a significant decrease in the sheet resistance of the composites from 81 to 7 Ω/sq. In addition, the s-CMC/PEDOT:PSS composite film exhibited high mechanical stability in repeated bending tests. The uniformly distributed AgNWs inside the composites enhanced the electrical contact between the conducting PEDOT:PSS domains in the CMC matrix. Based on the highly conductive, flexible, and robust s-CMC/PEDOT:PSS composite films, high-performance wearable heating devices and on-skin sensors were fabricated. The wearable heater achieves a high temperature of 159.5 ℃ with uniform temperature distribution. Furthermore, on-skin sensors with s-CMC/PEDOT:PSS composites were conformably integrated on human skin which successfully detected various human motions, including finger bending, wrist bending, skin touch, ankle motions, and walking in real-time. The sensors exhibit high sensing performance with high sensitivity, conformability, superior mechanical robustness, and low power consumption. The high-performance s-CMC/PEDOT:PSS composite film could be a promising flexible and conductive composite material with new opportunities in next-generation electronics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yao, S., Ren, P., Song, R., Liu, Y., Huang, Q., Dong, J., O’Connor, B.T., Zhu, Y.: Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv. Mater. 32, 1902343 (2020)

    Article  CAS  Google Scholar 

  2. Lim, H., Kim, H.S., Qazi, R., Kwon, Y., Jeong, J., Yeo, W.: Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, 1901924 (2020)

    Article  CAS  Google Scholar 

  3. Yang, J.C., Mun, J., Kwon, S.Y., Park, S., Bao, Z., Park, S.: Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019)

    Article  CAS  Google Scholar 

  4. Kim, J., Campbell, A.S., de Ávila, B.E.F., Wang, J.: Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389 (2019)

    Article  CAS  Google Scholar 

  5. Tang, N., Zhou, C., Qu, D., Fang, Y., Zheng, Y., Hu, W., Jin, K., Wu, W., Duan, X., Haick, H.: A highly aligned nanowire-based strain sensor for ultrasensitive monitoring of subtle human motion. Small 16, 1 (2020)

    Google Scholar 

  6. Hwang, B. U., Lee, J. H., Trung, T. Q., Roh, E., Kim, D. Il., Kim, S. W. and Lee, N. E.: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9, 8801. (2015)

  7. Li, Q., Ullah, Z., Li, W., Guo, Y., Xu, J., Wang, R., Zeng, Q., Chen, M., Liu, C., Liu, L.: Wide-range strain sensors based on highly transparent and supremely stretchable graphene/Ag-nanowires hybrid structures. Small 12, 5058 (2016)

    Article  CAS  Google Scholar 

  8. Nguyen, V.H., Papanastasiou, D.T., Resende, J., Bardet, L., Sannicolo, T., Jiménez, C., Muñoz-Rojas, D., Nguyen, N.D., Bellet, D.: Advances in flexible metallic transparent electrodes. Small 2106006, 1 (2022)

    Google Scholar 

  9. Matsuhisa, N., Chen, X., Bao, Z., Someya, T.: Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946 (2019)

    Article  CAS  Google Scholar 

  10. Ellmer, K.: Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6, 809 (2012)

    Article  CAS  Google Scholar 

  11. Lee, J. C., Lee, J. S., Won, P., Park, J. J., Choi, S. H., Ko, S. H., Kim, B. J., Lee, S. Y., Joo, Y. C.: Operation range-optimized silver nanowire through junction treatment. Electron. Mater. Lett. 16, 491 (2020)

  12. Sharma, A., Chourasia, N. K., Acharya, V., Pal, N., Biring, S., Liu, S. W., Pal, B. N.: Ultra-low voltage metal oxide thin film transistor by low-temperature annealed solution processed LiAlO2 gate dielectric. Electron. Mater. Lett. 16, 22 (2020)

  13. Mantione, D., del Agua, I., Sanchez-Sanchez, A. and Mecerreyes, D.: Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives: innovative conductive polymers for bioelectronics. Polymers (Basel). 9, 354 (2017)

  14. Fan, X., Nie, W., Tsai, H., Wang, N., Huang, H., Cheng, Y., Wen, R., Ma, L., Yan, F., Xia, Y.: PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6, 1900813 (2019)

    Article  CAS  Google Scholar 

  15. Kim, Y.H., Sachse, C., Machala, M.L., May, C., Müller-Meskamp, L., Leo, K.: Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 1076 (2011)

  16. Suneetha, M., Sun Moo, O., Mo Choi, S., Zo, S., Madhusudana Rao, K., Soo Han, S.: Tissue-adhesive, stretchable, and self-healable hydrogels based on carboxymethyl cellulose-dopamine/PEDOT:PSS via mussel-inspired chemistry for bioelectronic applications. Chem. Eng. J. 426, 130847 (2021)

    Article  CAS  Google Scholar 

  17. Belaineh, D., Andreasen, J.W., Palisaitis, J., Malti, A., Håkansson, K., Wågberg, L., Crispin, X., Engquist, I., Berggren, M.: Controlling the organization of PEDOT:PSS on cellulose structures. ACS Appl. Polym. Mater. 1, 2342 (2019)

    Article  CAS  Google Scholar 

  18. Del Agua, I., Mantione, D., Casado, N., Sanchez-Sanchez, A., Malliaras, G.G., Mecerreyes, D.: Conducting polymer Iongels based on PEDOT and Guar Gum. ACS Macro Lett. 6, 473 (2017)

    Article  Google Scholar 

  19. Yang, Y., Deng, H., Fu, Q.: Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater. Chem. Front. 4, 3130 (2020)

    Article  CAS  Google Scholar 

  20. Lee, Y., Choi, H., Zhang, H., Wu, Y., Lee, D., Wong, W.S., Tang, X.S., Park, J., Yu, H., Tam, K.C.: Sensitive, stretchable, and sustainable conductive cellulose nanocrystal composite for human motion detection. ACS Sustain. Chem. Eng. 9, 17351 (2021)

    Article  CAS  Google Scholar 

  21. Yin, H.-E., Wu, C.-H., Kuo, K.-S., Chiu, W.-Y., Tai, H.-J.: Innovative elastic and flexible conductive PEDOT: PSS composite films prepared by introducing soft latexes. J. Mater. Chem. 22, 3800 (2012)

  22. Oh, J. Y., Kim, S., Baik, H. K., Jeong, U.: conducting polymer dough for deformable electronics. Adv. Mater. 28, 4455 (2016)

  23. Liu, N., Fang, G., Wan, J., Zhou, H., Long, H., Zhao, X.: Electrospun PEDOT:PSS-PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. J. Mater. Chem. 21, 18962 (2011)

    Article  CAS  Google Scholar 

  24. Isogai, A.: Emerging nanocellulose technologies: recent developments. Adv. Mater. 33, 2000630 (2021)

    Article  CAS  Google Scholar 

  25. Clarkson, C.M., El Awad Azrak, S.M., Forti, E.S., Schueneman, G.T., Moon, R.J., Youngblood, J.P.: Recent developments in cellulose nanomaterial composites. Adv. Mater. 33, 2000718 (2021)

    Article  CAS  Google Scholar 

  26. Park, S.-W., Ha, J. H., Park, J. M., Cho, B. W., Choi, H.-J.: Enhanced capacity retention based silicon nanosheets electrode by CMC coating for lithium-ion batteries. Electron. Mater. Lett. 17, 268 (2021)

  27. Lee, C. J., Hwang, B. U., Jeong, H., Min, K. D., Jung, S. B.: Fabrication of novel Ag flake composite films using a CMC/PEI cross-linking process. Electron. Mater. Lett. 16, 332 (2020)

Download references

Acknowledgements

The authors acknowledge financial support from the Korea Institute of Science and Technology (Grant No. 2E30470), the National Research Foundation of Korea (NRF) grant funded by the Ko-rea government (MSIT) (No. 2021R1A2C1094308 and No. 2022R1A5A8023404), and the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A01087030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hyun Kim.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J.W., Prameswati, A., Entifar, S.A.N. et al. Highly Conductive, Flexible, and Robust Silver Nanowire-Embedded Carboxymethyl Cellulose/Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Composite Films for Wearable Heaters and On-Skin Sensors. Electron. Mater. Lett. 18, 532–539 (2022). https://doi.org/10.1007/s13391-022-00365-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00365-5

Keywords

Navigation