Skip to main content
Log in

Unraveling Adsorption Behaviors of Levelers for Bottom-Up Copper Filling in Through-Silicon-Via

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

A Correction to this article was published on 29 November 2022

This article has been updated

Abstract

A leveler is one of the most important additives for achieving defect-free Cu-filled through-silicon-via (TSV). In this study, we experimentally investigated TSV filling performance in the presence of three levelers, i.e., pyrrolidone, imine and diazonium. A detailed analysis of the mass change in the levelers from EQCM conclusively verified that the diazonium was strongly adsorbed on the copper surface at a current density of 10 mA/cm2. This behavior was attributed to its unique molecular structure, with a positively charged nitrogen and a carbocation from resonance structure. Observations of via filling suggested that the bottom-up fill performance was obtained in the presence of diazonium. The possible mechanism responsible for defect-free TSV filling is discussed in terms of the adsorption behaviors of levelers, which is dependent on their molecular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Pavlidis, V.F., Friedman, E.G.: Proc. IEEE 97, 123 (2009)

  2. Velenis, D., Stucchi, M., Marinissen, E.J., Swinnen, B., Beyne, E.: IEEE Int. Conf. 3D Syst. Integr. 1, 146 (2009)

  3. Wu, Z., Huang, Z., Ma, Y., Xiong, H., Conway, P. P.: Electron. Mater. Lett. 10, 281 (2014)

    Article  CAS  Google Scholar 

  4. Jeong, I.H., Jung, D.H., Shin, K.S., Shin, D.S., Jung, J.P.: Electron. Mater. Lett. 9, 389 (2013)

    Article  CAS  Google Scholar 

  5. Koo, JK., Lee, JH.: Electron. Mater. Lett. 10, 485 (2014)

    Article  CAS  Google Scholar 

  6. Lau, J.H.: Microelectron. Int. 28, 8 (2011)

    Article  CAS  Google Scholar 

  7. Kawano, M., Takahashi, N., Kurita, Y., Soejima, K., Komuro, M., Matsui, S.: IEEE Trans. Electron. Devices. 55, 1614 (2008)

    Article  CAS  Google Scholar 

  8. Xiao, H., He, H., Ren, X., Zeng, P., Wang, F.: Microelectron. Eng. 170, 54 (2017)

    Article  CAS  Google Scholar 

  9. Wang, C., Zhang, J., Yang, P., An, M.: Electrochim. Acta. 92, 356 (2013)

    Article  CAS  Google Scholar 

  10. Zhu, Y., Ma, S., Sun, X., Chen, J., Miao, M., Jin, Y.: Microelectron. Eng. 117, 8 (2014)

    Article  CAS  Google Scholar 

  11. Wang, Y., Zhu, W., Li, X., Wang, F.: Electrochim. Acta. 221, 70 (2016)

    Article  CAS  Google Scholar 

  12. Broekmann, P., Fluegel, A., Emnet, C., Arnold, M., Roeger-Goepfert, C., Wagner, A., Hai, N.T.M., Mayer, D.: Electrochim. Acta. 56, 4724 (2011)

    Article  CAS  Google Scholar 

  13. Huynh, T.M.T., Weiss, F., Hai, N.T.M., Reckien, W., Bredow, T., Fluegel, A., Arnold, M., Mayer, D., Keller, H., Broekmann, P.: Electrochim. Acta. 89, 537 (2013)

    Article  CAS  Google Scholar 

  14. Chiu, Y.-D., Dow, W.-P.: J. Electrochem. Soc. 160, D3021 (2013)

    Article  CAS  Google Scholar 

  15. Matsuoka, T., Otsubo, K., Onishi, Y., Amaya, K., Hayase, M.: Electrochim. Acta. 82, 356 (2012)

    Article  CAS  Google Scholar 

  16. Wang, G., Wu, G., Wang, Z., Zhang, X.: Langmuir. 30, 1531 (2014)

    Article  CAS  Google Scholar 

  17. Kim, M.J., Seo, Y., Kim, H.C., Lee, Y., Choe, S., Kim, Y.G., Cho, S.K., Kim, J.J.: Electrochim. Acta. 163, 174 (2015)

    Article  CAS  Google Scholar 

  18. Kim, M.J., Kim, H.C., Choe, S., Cho, J.Y., Lee, D., Jung, I., Cho, W.-S., Kim, J.J.: J. Electrochem. Soc. 160, D3221 (2013)

    Article  CAS  Google Scholar 

  19. Mendez, S., Andreasen, G., Schilardi, P., Figueroa, M., Vázquez, L., Salvarezza, R.C., Arvia, A.J.: Langmuir. 14, 2515 (1998)

    Article  CAS  Google Scholar 

  20. Ke, B., Hoekstra, J.J., Sison, B.C., Trivich, D.: J. Electrochem. Soc. 106, 382 (1959)

    Article  CAS  Google Scholar 

  21. Tsai, H.C., Chang, Y.C., Wu, P.W.: Electrochem. Solid-State Lett. 13, 35 (2010)

    Google Scholar 

  22. Lühn, O., Van Hoof, C., Ruythooren, W., Celis, J.P.: Electrochim. Acta. 54, 2504 (2009)

    Article  Google Scholar 

  23. Sun, J.-J., Kondo, K., Okamura, T., Oh, S., Tomisaka, M., Yonemura, H., Hoshino, M., Takahashi, K.: J. Electrochem. Soc. 150, G355 (2003)

    Article  CAS  Google Scholar 

  24. Jin, S.H., Lee, D.R., Lee, W.Y., Lee, S.Y., Lee, M.H.: Met. Mater. Int. 21, 775 (2015)

    Article  CAS  Google Scholar 

  25. Kankare, J.: Langmuir. 18, 7092 (2002)

    Article  CAS  Google Scholar 

  26. Mdluli, P.S., Sosibo, N.M., Revaprasadu, N., Karamanis, P., Leszczynski, J.: J. Mol. Struct. 935, 32 (2009)

    Article  CAS  Google Scholar 

  27. Minkenberg, C.B., Florusse, L., Eelkema, R., Koper, G.J.M., Van Esch, J.H.: J. Am. Chem. Soc. 131, 11274 (2009)

    Article  CAS  Google Scholar 

  28. Sui, X., Liu, Y., Shao, C., Liu, Y., Xu, C.: Chem. Phys. Lett. 424, 340 (2006)

    Article  CAS  Google Scholar 

  29. Belowich, M.E., Stoddart, J.F.: Chem. Soc. Rev. 41, 2003 (2012)

    Article  CAS  Google Scholar 

  30. Koziakov, D., Wu, G., Jacobi, A., Von Wangelin: Org. Biomol. Chem. 16, 4942 (2018)

    Article  CAS  Google Scholar 

  31. Doctorovich, F., Escola, N., Trápani, C., Estrin, D.A., González, M.C., Lebrero, Turjanski, A.G.: Organometallics. 19, 3810 (2000)

    Article  CAS  Google Scholar 

  32. Jiao, T., Wu, G., Zhang, Y., Shen, L., Lei, Y., Wang, C.Y., Fahrenbach, A.C., Li, H.: Angew. Chemie - Int. Ed. 59, 18350 (2020)

    Article  CAS  Google Scholar 

  33. Kim, S.M., Jin, S.H., Lee, Y.J., Lee, M.H.: Electrochim. Acta. 252, 67 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020M3H4A3081759).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung-Min Kim, Sang-Yul Lee or Min Hyung Lee.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to the reference list published incorrectly. The references 31-33 should be renumbered to 3-5 in the list.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Kim, SM., Jo, Y. et al. Unraveling Adsorption Behaviors of Levelers for Bottom-Up Copper Filling in Through-Silicon-Via. Electron. Mater. Lett. 18, 583–591 (2022). https://doi.org/10.1007/s13391-022-00364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00364-6

Keywords

Navigation