Skip to main content
Log in

Recent Progress in Carbon Electrodes for Efficient and Cost-Benign Perovskite Optoelectronics

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

With popularity of the perovskite optoelectronics, its material properties and device performances have been widely studied. However, the issues in cost management and continuous fabrication still hinder the commercialization of the perovskite optoelectronics. Especially, the conventional electrodes such as metal and transparent conducting oxide (TCO) have limitations due to the difficulties in fabrication which requires high temperature and vacuum processes, largely increasing the time and cost. Therefore, carbon materials with high electric conductivity and favorable work function are recently being noticed as alternatives to the conventional electrodes since the carbon materials are abundant in nature and low in the fabrication cost. Therefore, carbon electrode for the perovskite optoelectronics is widely studied to replace the conventional electrode, and utilizing carbon as an electrode can be the alternative solution for a future electrode model. In this review, the recent progress of carbon electrodes in perovskite optoelectronics and various applications will be discussed.

Graphical Abstract

Title: Recent Progress in Carbon Electrodes for Efficient and Cost-Benign Perovskite Optoelectronics. Keywords: Perovskite Solar Cells, Electrode, Carbon, Cost Engineering, Performance, Stability. Electrodes in the perovskite optoelectronics rely on the metal and oxide-based materials. Carbon is highly conductive and has proper work function of 5.0 eV, which has a potential to replace the conventional vacuum-processed electrodes, such as metal and transparent conducting oxide (TCO). Moreover, carbon electrode allows wide utilizations in flexible, semi-transparent, and large-area devices. Therefore, utilizing carbon as an effective electrode can be the alternative solution for the future electrode model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee, S., Flanagan, J.C., Lee, B., Hwang, T., Kim, J., Gil, B., Shim, M., Park, B.: Route to improving photovoltaics based on CdSe/CdSexTe1-x type-II heterojunction nanorods: the effect of morphology and cosensitization on carrier recombination and transport. ACS Appl. Mater. Interfaces 9, 31931 (2017)

    Article  CAS  Google Scholar 

  2. Lee, S.Y., Hwang, T., Lee, S., Lee, W., Lee, B., Kim, J., Kim, S., Lee, H., Lee, H.M., Park, B.: Nanoroughness control of Al-doped ZnO for high efficiency Si thin-film solar cells. Curr. Appl. Phys. 15, 1353 (2015)

    Article  Google Scholar 

  3. Kim, J., Hwang, T., Lee, S., Lee, B., Kim, J., Jang, G.S., Nam, S., Park, B.: Solvent and intermediate phase as boosters for the perovskite transformation and solar cell performance. Sci. Rep. 6, 25648 (2016)

    Article  CAS  Google Scholar 

  4. Kim, J., Hwang, T., Lee, S., Lee, B., Kim, J., Gil, B., Park, B.: Synergetic effect of double-step blocking layer for the perovskite solar cell. J. Appl. Phys. 122, 145106 (2017)

    Article  CAS  Google Scholar 

  5. Shin, B., Guanwan, O., Zhu, Y., Bojarczuk, N.A., Chey, S.J., Guha, S.: Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt. Res. Appl. 21, 72 (2013)

    Article  CAS  Google Scholar 

  6. Park, H.H., Heasley, R., Sun, L., Steinmann, V., Jaramillo, R., Hartman, K.: Co-optimization of SnS absorber and Zn (O, S) buffer materials for improved solar cells. Prog. Photovolt. Res. Appl. 23, 901 (2015)

    Article  CAS  Google Scholar 

  7. Hwang, S.T., Gil, B., Yun, A.J., Kim, J., Kim, J., Woo, H., Park, K., Park, B.: Highly effective III-V solar cells by controlling the surface roughnesses. Curr. Appl. Phys. 20, 899 (2020)

    Article  Google Scholar 

  8. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009)

    Article  CAS  Google Scholar 

  9. Kim, J., Hwang, T., Lee, B., Lee, S., Park, K., Park, H.H., Park, B.: An aromatic diamine molecule as the A-site solute for highly durable and efficient perovskite solar cells. Small Methods 3, 1800361 (2019)

    Article  CAS  Google Scholar 

  10. Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H., Seok, S.I.: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376 (2017)

    Article  CAS  Google Scholar 

  11. Park, H.H., Song, S., Seo, J.: Perspective: Approaches for layers above the absorber in perovskite solar cells for semitransparent and tandem applications. Mater. Today Energy 21, 100729 (2021)

    Article  Google Scholar 

  12. Park, H.H.: Inorganic materials by atomic layer deposition for perovskite solar cells. Nanomaterials 11, 88 (2021)

    Article  CAS  Google Scholar 

  13. Kim, J., Yun, A.J., Gil, B., Lee, Y., Park, B.: Triamine-based aromatic cation as a novel stabilizer for efficient perovskite solar cells. Adv. Funct. Mater. 29, 1905190 (2019)

    Article  CAS  Google Scholar 

  14. Park, I.J., Kim, D.H., Ji, S.G., Ahn, Y.J., Park, S.J., Kim, D., Shin, B., Kim, J.Y.: Rationally designed window layers for high efficiency perovskite/si tandem solar cells. Adv. Opt. Mater. 9, 2100788 (2021)

    Article  CAS  Google Scholar 

  15. Kim, D., Jung, H.J., Park, I.J., Larson, B.W., Dunfield, S.P., Chuanxiao, X., Kim, J., Tong, J., Boonmongkolras, P., Ji, S.G., Zhang, F., Pae, S.R., Kim, M., Kang, S.B., Dravid, V., Berry, J.J., Kim, J.Y., Zhu, K., Kim, D.H., Shin, B.: Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155 (2020)

    Article  CAS  Google Scholar 

  16. Duong, T., Wu, Y., Shen, H., Peng, J., Fu, X., Jacobs, D., Wang, E.-C., Kho, T.C., Fong, K.C., Stocks, M., Franklin, E., Blakers, A., Zin, N., McIntosh, K., Li, W., Cheng, Y.-B., White, T.P., Weber, K., Catchpole, K.: Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017)

    Article  CAS  Google Scholar 

  17. Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P.C., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M.: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efciency. Energy Environ. Sci. 9, 1989 (2016)

    Article  CAS  Google Scholar 

  18. Hwang, T., Yun, A.J., Kim, J., Cho, D., Kim, S., Hong, S., Park, B.: Electronic traps and their correlations to perovskite solar cell performance via compositional and thermal annealing controls. ACS Appl. Mater. Interfaces 11, 6907 (2019)

    Article  CAS  Google Scholar 

  19. Hwang, T., Yun, A.J., Lee, B., Kim, J., Lee, Y., Park, B.: Methylammonium-chloride post-treatment on perovskite surface and its correlation to photovoltaic performance in the aspect of electronic traps. J. Appl. Phys. 126, 023101 (2019)

    Article  CAS  Google Scholar 

  20. Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.-W., Stranks, S.D., Snaith, H.J., Nicholas, R.J.: Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582 (2015)

    Article  CAS  Google Scholar 

  21. Lee, S., Flanagan, J.C., Kang, J., Kim, J., Shim, M., Park, B.: Integration of CdSe/CdSexTe1−x type-II heterojunction nanorods into hierarchically porous TiO2 electrode for efficient solar energy conversion. Sci. Rep. 6, 26992 (2016)

    CAS  Google Scholar 

  22. Hwang, T., Lee, S., Kim, J., Kim, J., Kim, C., Shin, B., Park, B.: Tailoring the mesoscopic TiO2 layer: concomitant parameters for enabling high-performance perovskite solar cells. Nanoscale Res. Lett. 12, 57 (2017)

    Article  CAS  Google Scholar 

  23. Yun, A.J., Kim, J., Gil, B., Woo, H., Park, K., Cho, J., Park, B.: Incorporation of lithium fluoride restraining thermal degradation and photodegradation of organometal halide perovskite solar cells. ACS Appl. Mater. Interfaces 12, 50418 (2020)

    Article  CAS  Google Scholar 

  24. Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., Huang, J.: Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 6225 (2015)

    Article  Google Scholar 

  25. Hwang, T., Lee, B., Kim, J., Lee, S., Gil, B., Yun, A.J., Park, B.: From nanostructural evolution to dynamic interplay of constituents: perspectives for perovskite solar cells. Adv. Mater. 30, 1704208 (2018)

    Article  CAS  Google Scholar 

  26. Lee, B., Lee, S., Cho, D., Kim, J., Hwang, T., Kim, K.H., Hong, S., Moon, T., Park, B.: Evaluating the optoelectronic quality of hybrid perovskites by conductive atomic force microscopy with noise spectroscopy. ACS Appl. Mater. Interfaces 8, 30985 (2017)

    Article  CAS  Google Scholar 

  27. Hwang, T., Cho, D., Kim, J., Kim, J., Lee, S., Lee, B., Kim, K.H., Hong, S., Kim, C., Park, B.: Investigation of chlorine-mediated microstructural evolution of CH3NH3PbI3(Cl) grains for high optoelectronic responses. Nano Energy 25, 91 (2016)

    Article  CAS  Google Scholar 

  28. Gil, B., Kim, J., Yun, A.J., Park, K., Cho, J., Park, M., Park, B.: CuCrO2 nanoparticles incorporated into PTAA as a hole transport layer for 85°C and light stabilities in perovskite solar cells. Nanomaterials 10, 1669 (2020)

    Article  CAS  Google Scholar 

  29. Kim, J., Lee, Y., Gil, B., Yun, A.J., Kim, J., Woo, H., Park, K., Park, B.: Cu2O-CuSCN nanocomposite as a hole-transport material of perovskite solar cells for the enhanced carrier transport and suppressed interfacial degradation. ACS Appl. Energy Mater. 3, 7572 (2020)

    Article  CAS  Google Scholar 

  30. Kim, B., Kim, C., Kim, T.G., Ahn, D., Park, B.: The effect of AlPO4-coating layer on the electrochemical properties in LiCoO2 thin films. J. Electrochem. Soc. 153, A1773 (2006)

    Article  CAS  Google Scholar 

  31. Kim, J., Lee, Y., Yun, A.J., Gil, B., Park, B.: Interfacial modification and defect passivation by the cross-linking interlayer for efficient and stable CuSCN-based perovskite solar cells. ACS Appl. Mater. Interfaces 11, 46818 (2019)

    Article  CAS  Google Scholar 

  32. Lee, B., Yun, A.J., Kim, J., Gil, B., Shin, B., Park, B.: Aminosilane-modified cugao2 nanoparticles incorporated with CuSCN as a hole-transport layer for efficient and stable perovskite solar cells. Adv. Mater. Interfaces 6, 1901372 (2019)

    Article  CAS  Google Scholar 

  33. Yun, A.J., Kim, J., Hwang, T., Park, B.: Origins of efficient perovskite solar cells with low-temperature processed SnO2 electron transport layer. ACS Appl. Energy Mater. 2, 3554 (2019)

    Article  CAS  Google Scholar 

  34. Gil, B., Yun, A.J., Lee, Y., Kim, J., Lee, B., Park, B.: Recent progress in inorganic hole transport materials for efficient and stable perovskite solar cells. Electron. Mater. Lett. 15, 505 (2019)

    Article  CAS  Google Scholar 

  35. Kim, J., Choi, C., Nahm, C., Moon, J., Kim, C., Nam, S., Jung, D., Park, B.: The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells. J. Power Sour. 196, 10526 (2011)

    Article  CAS  Google Scholar 

  36. Choi, H., Nahm, C., Kim, J., Moon, J., Nam, S., Jung, D., Park, B.: The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Curr. Appl. Phys. 12, 737 (2012)

    Article  Google Scholar 

  37. Kim, J., Choi, H., Nahm, C., Kim, C., Nam, S., Kang, S., Jung, D., Kim, J.I., Kang, J., Park, B.: The role of a TiCl4 treatment on the performance of CdS quantum-dot-sensitized solar cells. J. Power Sour. 220, 108 (2012)

    Article  CAS  Google Scholar 

  38. Kim, J., Choi, H., Nahm, C., Kim, C., Kim, J.I., Lee, W., Kang, S., Lee, B., Hwang, T., Park, H.H., Park, B.: Graded bandgap structure for PbS/CdS/ZnS quantum-dot-sensitized solar cells with a PbxCd1-xS interlayer. Appl. Phys. Lett. 102, 183901 (2013)

    Article  CAS  Google Scholar 

  39. Kim, C., Choi, H., Kim, J.I., Lee, S., Kim, J., Lee, W., Hwang, T., Kang, S., Moon, T., Park, B.: Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Nanoscale Res. Lett. 9, 295 (2014)

    Article  CAS  Google Scholar 

  40. Lee, S., Hwang, T., Lee, W., Lee, S., Choi, H., Ahn, S., Lee, H., Park, B.: Oxygen-controlled seed layer in DC sputter-deposited ZnO: Al substrate for Si thin-film solar cells. IEEE J. Photovolt. 5, 473 (2015)

    Article  Google Scholar 

  41. Lee, W., Kang, S., Hwang, T., Kim, T., Woo, H., Lee, B., Kim, J., Kim, J., Park, B.: Facile conversion synthesis of densely-formed branched ZnO-nanowire arrays for quantum-dot-sensitized solar cells. Electrochim. Acta 167, 194 (2015)

    Article  CAS  Google Scholar 

  42. Choi, H., Hwang, T., Lee, S., Nam, S., Kang, J., Lee, B., Park, B.: The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes. J. Power Sour. 274, 937 (2015)

    Article  CAS  Google Scholar 

  43. Lee, W., Hwang, T., Lee, S., Lee, S., Kang, J., Lee, B., Kim, J., Moon, T., Park, B.: Organic-acid texturing of transparent electrodes toward broadband light trapping in thin-film solar cells. Nano Energy 17, 180 (2015)

    Article  CAS  Google Scholar 

  44. Hwang, S., Kim, S., Cheun, H., Lee, H., Lee, B., Hwang, T., Lee, S., Yoon, W., Lee, H., Park, B.: Bandgap grading and Al03Ga07As heterojunction emitter for highly efficient GaAs-based solar cells. Sol. Energy Mater. Sol. Cells 155, 264 (2016)

    Article  CAS  Google Scholar 

  45. Wei, Q., Yang, Z., Yang, D., Zi, W., Ren, X., Liu, Y., Liu, X., Feng, J., Liu, S.: The effect of transparent conductive oxide on the performance CH3NH3PbI3 perovskite solar cell without electron/hole selective layers. Sol. Energy 135, 654 (2016)

    Article  CAS  Google Scholar 

  46. Kim, D.W., Kim, I.T., Park, B., Hong, K.S., Kim, J.H.: Microwave dielectric properties of (1–x) Cu3Nb2O8-xZn3Nb2O8 ceramics. J. Mater. Res. 16, 1465 (2001)

    Article  CAS  Google Scholar 

  47. Cruz, A., Erfurt, D., Wagner, F., Morales-Vilches, A.B., Ruske, F., Schlatmann, R., Stannowski, B.: Optoelectrical analysis of TCO+Silicon oxide double layers at the front and rear side of silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells. 236, 111493 (2022)

    Article  CAS  Google Scholar 

  48. Oh, Y., Nam, S., Wi, S., Hong, S., Park, B.: Nanoscale interface control for high-performance Li-ion batteries. Electron. Mater. Lett. 8, 91 (2012)

    Article  CAS  Google Scholar 

  49. Woo, H., Kang, J., Kim, J., Kim, C., Nam, S., Park, B.: Development of carbon-based cathodes for Li-air batteries: present and future. Electron. Mater. Lett. 12, 551 (2016)

    Article  CAS  Google Scholar 

  50. Park, B., Stephenson, G.B., Allen, S.M., Ludwig, K.F.: Development of fluctuations into domains during ordering in Fe3Al. Phys. Rev. Lett. 68, 1742 (1992)

    Article  CAS  Google Scholar 

  51. Jung, D.R., Kim, J., Nahm, C., Choi, H., Nam, S., Park, B.: Semiconductor nanoparticles with surface passivation and surface plasmon. Electron. Mater. Lett. 7, 185 (2011)

    Article  CAS  Google Scholar 

  52. Smirnov, Y., Schmengler, L., Kuik, R., Repecaud, P., Najafi, M., Zhang, D., Theelen, M., Aydin, E., Veenstra, S., Wolf, S.D., Morales-Masis, M.: Scalable pulsed laser deposition of transparent rear electrode for perovskite solar cells. Adv. Mater. Technol. 6, 2000856 (2021)

    Article  CAS  Google Scholar 

  53. Oh, H., Nam, S., Wi, S., Kang, J., Hwang, T., Lee, S., Park, H.H., Cabana, J., Kim, C., Park, B.: Effective wrapping of graphene on individual Li4Ti5O12 grains for high-rate Li-ion batteries. J. Mater. Chem. A 2, 2023 (2014)

    Article  CAS  Google Scholar 

  54. Wi, S., Woo, H., Lee, S., Kang, J., Kim, J., An, S., Kim, C., Nam, S., Kim, C., Park, B.: Reduced graphene oxide/carbon double-coated 3-D Porous ZnO aggregates as high-performance Li-ion anode materials. Nanoscale Res. Lett. 10, 204 (2015)

    Article  CAS  Google Scholar 

  55. Nam, S., Yang, S.J., Lee, S., Kim, J., Kang, J., Oh, J.Y., Park, C.R., Moon, T., Lee, K.T., Park, B.: Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes. Carbon 85, 289 (2015)

    Article  CAS  Google Scholar 

  56. Wi, S., Kim, J., Park, K., Lee, S., Kang, J., Kim, K.H., Nam, S., Kim, C., Park, B.: Evaluation of graphene-wrapped LiFePO4 as novel cathode materials for Li-ion batteries. RSC Adv. 6, 105081 (2016)

    Article  CAS  Google Scholar 

  57. Kim, J., Lee, K.E., Kim, K.H., Wi, S., Lee, S., Nam, S., Kim, C., Kim, S.O., Park, B.: Single-layer graphene-wrapped Li4Ti5O12 anode with superior lithium storage capability. Carbon 114, 275 (2017)

    Article  CAS  Google Scholar 

  58. Kang, J., Kim, J., Lee, S., Wi, S., Kim, C., Hyun, S., Nam, S., Park, Y., Park, B.: Breathable carbon-free electrode: Black TiO2 with hierarchically ordered porous structure for stable Li-O2 battery. Adv. Energy Mater. 7, 1700814 (2017)

    Article  CAS  Google Scholar 

  59. Wi, S., Park, J., Lee, S., Kim, J., Gil, B., Yun, A.J., Sung, Y.E., Park, B., Kim, C.: Insights on the delithiation/lithiation reactions of LixMn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano Energy 39, 371 (2017)

    Article  CAS  Google Scholar 

  60. Woo, H., Wi, S., Kim, J., Kim, J., Lee, S., Hwang, T., Kang, J., Kim, J., Park, K., Gil, B., Nam, S., Park, B.: Complementary surface modification by disordered carbon and reduced graphene oxide on SnO2 hollow spheres as an anode for Li-ion battery. Carbon 129, 342 (2018)

    Article  CAS  Google Scholar 

  61. Park, K., Kim, J., Wi, S., Lee, S., Hwang, T., Kim, J., Kang, J., Choi, J.-P., Nam, S., Park, B.: Optimum morphology of mixed-olivine mesocrystals for a Li-ion battery. Inorg. Chem. 57, 5999 (2018)

    Article  CAS  Google Scholar 

  62. Kim, J., Park, K., Woo, H., Gil, B., Park, Y.S., Kim, I.S., Park, B.: Selective removal of nanopores by triphenylphosphine treatment on the natural graphite anode. Electrochim. Acta 326, 134993 (2019)

    Article  CAS  Google Scholar 

  63. Woo, H., Park, K., Kim, J., Yun, A.J., Nam, S., Park, B.: 3D Meshlike polyacrylamide hydrogel as a novel binder system via in situ polymerization for high-performance Si-based electrode. Adv. Mater. Interfaces 7, 1901475 (2020)

    Article  CAS  Google Scholar 

  64. Woo, H., Gil, B., Kim, J., Park, K., Yun, A.J., Kim, K., Nam, S., Park, B.: Metal-coordination mediated polyacrylate for high performance Si-microparticle anode. Batteries Supercaps 3, 1287 (2020)

    Article  CAS  Google Scholar 

  65. Krebs, F.C.: Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394 (2009)

    Article  CAS  Google Scholar 

  66. Rong, Y., Ming, Y., Ji, W., Li, D., Mei, A., Hu, Y., Han, H.: Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques. J. Phys. Chem. Lett. 9, 2707 (2018)

    Article  CAS  Google Scholar 

  67. Patidar, R., Burkitt, D., Hooper, K., Richards, D., Watson, T.: Slot-die coating of perovskite solar cells: an overview. Mater. Today Commun. 22, 100808 (2020)

    Article  CAS  Google Scholar 

  68. Kelly, B.T.: Physics of Graphite (1981)

  69. Chung, D.D.L.: Review graphite. J. Mater. Sci. 37, 1475 (2002)

    Article  CAS  Google Scholar 

  70. Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., Bhowmick, A.K.: A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36, 638 (2011)

    Article  CAS  Google Scholar 

  71. Tatar, R.C., Rabii, S.: Electronic properties of graphite: a unified theoretical study. Phys. Rev. B 25, 4126 (1982)

    Article  CAS  Google Scholar 

  72. Charlier, J.C., Gonze, X., Michenaud, J.P.: First-principles study of the electronic properties of graphite. Phys. Rev. B 43, 4579 (1991)

    Article  CAS  Google Scholar 

  73. Liang, C., Chen, Y., Wu, M., Wang, K., Zhang, W., Gan, Y., Huang, H., Chen, J., Xia, Y., Zhang, S., Zheng, S., Pan, H.: Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nat. Commun. 12, 119 (2021)

    Article  CAS  Google Scholar 

  74. Duan, M., Tian, C., Hu, Y., Mei, A., Rong, Y., Xiong, Y., Xu, M., Sheng, Y., Jiang, P., Hou, X., Zhu, X., Qin, F., Han, H.: Boron-doped graphite for high work function carbon electrode in printable hole-conductor-free mesoscopic perovskite solar cells. ACS Appl. Mater. Interfaces 9, 31721 (2017)

    Article  CAS  Google Scholar 

  75. Yang, Y., Xiao, J., Wei, H., Zhu, L., Li, D., Luo, Y., Wu, H., Meng, Q.: An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Adv. 4, 52825 (2014)

    Article  CAS  Google Scholar 

  76. Duan, M., Rong, Y., Mei, A., Hu, Y., Sheng, Y., Guan, Y., Han, H.: Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with carbon electrode based on ultrathin graphite. Carbon 120, 71 (2017)

    Article  CAS  Google Scholar 

  77. Tumen-Ulzii, G., Qin, C., Matsushima, T., Leyden, M.R., Balijipalli, U., Klotz, D., Adachi, C.: Understanding the degradation of Spiro-OMeTAD-based perovskite solar cells at high temperature. Solar RRL 4, 2000305 (2020)

    Article  CAS  Google Scholar 

  78. Jena, A.K., Numata, Y., Ikegami, M., Miyasaka, T.: Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. J. Mater. Chem. A 6, 2219 (2018)

    Article  CAS  Google Scholar 

  79. Kasparavicius, E., Magomedov, A., Malinauskas, T., Getautis, V.: Long-term stability of the oxidized hole-transporting materials used in perovskite solar cells. Chem. Eur. J. 24, 9910 (2018)

    Article  CAS  Google Scholar 

  80. Magomedov, A., Kasparavičius, E., Rakstys, K., Paek, S., Gasilova, N., Genevičius, K., Juska, G., Malinauskas, T., Nazeeruddin, M.K., Getautis, V.: Pyridination of hole transporting material in perovskite solar cells questions the long-term stability. J. Mater. Chem. C 6, 8874 (2018)

    Article  CAS  Google Scholar 

  81. Wang, R., Mujahid, M., Duan, Y., Wang, Z.K., Xue, J., Yang, Y.: A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019)

    Article  CAS  Google Scholar 

  82. Zhou, H., Shi, Y., Dong, Q., Zhang, H., Xing, Y., Wang, K., Du, Y., Ma, T.: Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5, 3241 (2014)

    Article  CAS  Google Scholar 

  83. Chu, Q.Q., Ding, B., Qiu, Q., Liu, Y., Li, C.X., Li, C.J., Yang, G.J., Fang, B.: Cost effective perovskite solar cells with a high efficiency and open-circuit voltage based on a perovskite-friendly carbon electrode. J. Mater. Chem. A 6, 8271 (2018)

    Article  CAS  Google Scholar 

  84. He, S., Qiu, L., Son, D.Y., Liu, Z., Juarez-Perez, E.J., Ono, L.K., Stecker, C., Qi, Y.: Carbon-based electrode engineering boosts the efficiency of all low-temperature-processed perovskite solar cells. ACS Energy Lett. 4, 2032 (2019)

    Article  CAS  Google Scholar 

  85. Zhou, L., Zuo, Y., Mallick, T.K., Sundaram, S.: Enhanced efficiency of carbon-based mesoscopic perovskite solar cells through a tungsten oxide nanoparticle additive in the carbon electrode. Sci. Rep. 9, 1 (2019)

    Google Scholar 

  86. Wang, S., Jiang, P., Shen, W., Mei, A., Xiong, S., Jiang, X., Rong, Y., Tang, Y., Hu, Y., Han, H.: A low-temperature carbon electrode with good perovskite compatibility and high flexibility in carbon based perovskite solar cells. ChemComm. 55, 2765 (2019)

    CAS  Google Scholar 

  87. Zhang, F., Yang, X., Cheng, M., Wang, W., Sun, L.: Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy 20, 108 (2016)

    Article  CAS  Google Scholar 

  88. Wang, G., Liu, J., Chen, K., Pathak, R., Gurung, A., Qiao, Q.: High-performance carbon electrode-based CsPbI2Br inorganic perovskite solar cell based on poly (3-hexylthiophene)-carbon nanotubes composite hole-transporting layer. J. Colloid Interface Sci. 555, 180 (2019)

    Article  CAS  Google Scholar 

  89. Behrouznejad, F., Forouzandeh, M., Khosroshahi, R., Meraji, K., Badrabadi, M.N., Dehghani, M., Li, X., Zhan, Y., Liao, Y., Ning, Z., Taghavinia, N.: effective carbon composite electrode for low-cost perovskite solar cell with inorganic CuIn075Ga025S2 hole transport material. Solar RRL 4, 1900564 (2020)

    Article  CAS  Google Scholar 

  90. Zhou, H., Shi, Y., Wang, K., Dong, Q., Bai, X., Xing, Y., Du, Y., Ma, T.: Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells. J. Phys. Chem. C 119, 4600 (2015)

    Article  CAS  Google Scholar 

  91. Dresselhaus, G., Dresselhaus, M.S., Saito, R.: Physical Properties of Carbon Nanotubes. World Scientific, Singapore (1998)

    Google Scholar 

  92. Popov, V.N.: Carbon nanotubes: properties and application. Mater. Sci. Eng. R Rep. 43, 61 (2004)

    Article  CAS  Google Scholar 

  93. Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Abasi, M., Hanifehpour, Y., Joo, S.W.: Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9, 1 (2014)

    Article  CAS  Google Scholar 

  94. Suzuki, K., Yamaguchi, M., Kumagai, M., Yanagida, S.: Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32, 28 (2003)

    Article  CAS  Google Scholar 

  95. Habisreutinger, S.N., Nicholas, R.J., Snaith, H.J.: Carbon nanotubes in perovskite solar cells. Adv. Energy Mater. 7, 1601839 (2017)

    Article  CAS  Google Scholar 

  96. Jeon, I., Matsuo, Y., Maruyama, S.: Single-walled carbon nanotubes in solar cells. In: Single-Walled Carbon Nanotubes, p. 271 (2019)

  97. Terrones, M.: Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33, 419 (2003)

    Article  CAS  Google Scholar 

  98. Batmunkh, M., Shearer, C.J., Bat-Erdene, M., Biggs, M.J., Shapter, J.G.: Single-walled carbon nanotubes enhance the efficiency and stability of mesoscopic perovskite solar cells. ACS Appl. Mater. Interfaces 9, 19945 (2017)

    Article  CAS  Google Scholar 

  99. Saran, N., Parikh, K., Suh, D.S., Munoz, E., Kolla, H., Manohar, S.K.: Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. J. Am. Chem. Soc. 126, 4462 (2004)

    Article  CAS  Google Scholar 

  100. Habisreutinger, S.N., Leijtens, T., Eperon, G.E., Stranks, S.D., Nicholas, R.J., Snaith, H.J.: Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561 (2014)

    Article  CAS  Google Scholar 

  101. Lee, J.W., Jeon, I., Lin, H.S., Seo, S., Han, T.H., Anisimov, A., Kauppinen, E.I., Matsuo, Y., Maruyama, S., Yang, Y.: Vapor-assisted ex-situ doping of carbon nanotube toward efficient and stable perovskite solar cells. Nano Lett. 19, 2223 (2018)

    Article  CAS  Google Scholar 

  102. Elakshar, A., Tsarev, S., Rajanna, P.M., Tepliakova, M., Frolova, L., Gladush, Y.G., Aldoshin, S.M., Troshin, P.A., Nasibulin, A.G.: Surface passivation for efficient bifacial HTL-free perovskite solar cells with SWCNT top electrodes. ACS Appl. Energy Mater. 4, 13395 (2021)

    Article  CAS  Google Scholar 

  103. Tran, V.D., Pammi, S.V.N., Dao, V.D., Choi, H.S., Yoon, S.G.: Chemical vapor deposition in fabrication of robust and highly efficient perovskite solar cells based on single-walled carbon nanotubes counter electrodes. J. Alloys Compd. 747, 703 (2018)

    Article  CAS  Google Scholar 

  104. Wei, Z., Chen, H., Yan, K., Zheng, X., Yang, S.: Hysteresis free multi-walled carbon nanotube-based perovskite solar cells with high fill factor. J. Mater. Chem. 3, 24226 (2015)

    Article  CAS  Google Scholar 

  105. Peigney, A., Laurent, C., Flahaut, E., Bacsa, R.R., Rousset, A.: Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39, 507 (2001)

    Article  CAS  Google Scholar 

  106. Li, Z., Kandel, H.R., Dervishi, E., Saini, V., Biris, A.S., Biris, A.R., Lupu, D.: Does the wall number of carbon nanotubes matter as conductive transparent material? Appl. Phys. Lett. 91, 053115 (2007)

    Article  CAS  Google Scholar 

  107. Luo, Q., Wu, R., Ma, L., Wang, C., Liu, H., Lin, H., Wang, N., Chen, Y., Guo, Z.: Recent advances in carbon nanotube utilizations in perovskite solar cells. Adv. Funct. Mater. 31, 2004765 (2021)

    Article  CAS  Google Scholar 

  108. Chen, R., Feng, Y., Jing, L., Wang, M., Ma, H., Bian, J., Shi, Y.: Low-temperature sprayed carbon electrode in modular HTL-free perovskite solar cells: a comparative study on the choice of carbon sources. J. Mater. Chem. C 9, 3546 (2021)

    Article  CAS  Google Scholar 

  109. Raiguru, J., Mahanandia, P., Subudhi, B.: Alternative approach for efficient hole transporting electrode by depositing MWCNT layer on CZTS-MWCNT material for perovskite solar cell application. Opt. Mater. 111, 110612 (2021)

    Article  CAS  Google Scholar 

  110. Liao, G., Zhao, Y., Duan, J., Yuan, H., Wang, Y., Yang, X., He, B., Tang, Q.: Enhanced charge extraction with all-carbon electrodes for inorganic CsPbBr3 perovskite solar cells. Dalton Trans. 47, 15283 (2018)

    Article  CAS  Google Scholar 

  111. Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48, 2127 (2010)

    Article  CAS  Google Scholar 

  112. Neto, A.C., Guinea, F., Peres, N.M., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys 81, 109 (2009)

    Article  CAS  Google Scholar 

  113. Liu, N., Chortos, A., Lei, T., Jin, L., Kim, T.R., Bae, W.G., Zhu, C., Wang, S., Pfattner, R., Chen, X., Sinclair, R., Bao, Z.: Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017)

    Article  CAS  Google Scholar 

  114. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008)

    Article  CAS  Google Scholar 

  115. Partoens, B., Peeters, F.M.: From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 74, 075404 (2006)

    Article  CAS  Google Scholar 

  116. Abergel, D.S.L., Apalkov, V., Berashevich, J., Ziegler, K., Chakraborty, T.: Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261 (2010)

    Article  CAS  Google Scholar 

  117. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  CAS  Google Scholar 

  118. Chen, S., Deng, L., Xie, J., Peng, L., Xie, L., Fan, Q., Huang, W.: Recent developments in top-emitting organic light-emitting diodes. Adv. Mater. 22, 5227 (2010)

    Article  CAS  Google Scholar 

  119. Di Giacomo, F., Fakharuddin, A., Jose, R., Brown, T.M.: Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9, 3007 (2016)

    Article  Google Scholar 

  120. Lewis, B.G., Paine, D.C.: Applications and processing of transparent conducting oxides. MRS Bull. 25, 22 (2000)

    Article  CAS  Google Scholar 

  121. Hu, X., Chen, L., Zhang, Y., Hu, Q., Yang, J., Chen, Y.: Large-scale flexible and highly conductive carbon transparent electrodes via roll-to-roll process and its high performance lab-scale indium tin oxide-free polymer solar cells. Chem. Mater. 26, 6293 (2014)

    Article  CAS  Google Scholar 

  122. Sung, H., Ahn, N., Jang, M.S., Lee, J.K., Yoon, H., Park, N.G., Choi, M.: Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6, 1501873 (2016)

    Article  CAS  Google Scholar 

  123. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574 (2010)

    Article  CAS  Google Scholar 

  124. Park, B.J., Choi, J.S., Eom, J.H., Ha, H., Kim, H.Y., Lee, S., Shin, H., Yoon, S.G.: Defect-free graphene synthesized directly at 150℃ via chemical vapor deposition with no transfer. ACS Nano 12, 2008 (2018)

    Article  CAS  Google Scholar 

  125. Tran, V.D., Pammi, S.V.N., Park, B.J., Han, Y., Jeon, C., Yoon, S.G.: Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air. Nano Energy 65, 104018 (2019)

    Article  CAS  Google Scholar 

  126. Shin, D.H., Kim, J.M., Shin, S.H., Choi, S.H.: Highly-flexible graphene transparent conductive electrode/perovskite solar cells with graphene quantum dots-doped PCBM electron transport layer. Dyes Pigm. 170, 107630 (2019)

    Article  CAS  Google Scholar 

  127. Tongay, S., Berke, K., Lemaitre, M., Nasrollahi, Z., Tanner, D.B., Hebard, A.F., Appleton, B.R.: Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 22, 425701 (2011)

    Article  CAS  Google Scholar 

  128. Heo, J.H., Shin, D.H., Song, D.H., Kim, D.H., Lee, S.J., Im, S.H.: Super-flexible bis (trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. J. Mater. Chem. A 6, 8251 (2018)

    Article  CAS  Google Scholar 

  129. Yao, Z., Qu, D., Guo, Y., Huang, H.: Flexible, stable and indium-free perovskite solar cells using solution-processed transparent graphene electrodes. J. Mater. Sci. 54, 11564 (2019)

    Article  CAS  Google Scholar 

  130. Zhang, C., Wang, S., Zhang, H., Feng, Y., Tian, W., Yan, Y., Bian, J., Wang, Y., Jin, S., Zakeeruddin, S.M., Grätzel, M., Shi, Y.: Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy Environ. Sci. 12, 3585 (2019)

    Article  CAS  Google Scholar 

  131. Yuan, H., Zhao, Y., Duan, J., He, B., Jiao, Z., Tang, Q.: Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells. Electrochim. Acta 279, 84 (2018)

    Article  CAS  Google Scholar 

  132. Mujahid, M., Chen, C., Hu, W., Wang, Z.K., Duan, Y.: Progress of high-throughput and low-cost flexible perovskite solar cells. Solar RRL 4, 1900556 (2020)

    Article  CAS  Google Scholar 

  133. Liang, L., Cai, Y., Gao, P.: A facile gas-driven ink spray (GDIS) deposition strategy toward hole-conductor-free carbon-based perovskite solar cells. In: Emergent Mater, p. 1 (2021)

  134. Pierre, A., Sadeghi, M., Payne, M.M., Facchetti, A., Anthony, J.E., Arias, A.C.: All-printed flexible organic transistors enabled by surface tension-guided blade coating. Adv. Mater. 26, 5722 (2014)

    Article  CAS  Google Scholar 

  135. Xu, J., Wang, Y., Shan, H., Lin, Y., Chen, Q., Roy, V.A.L., Xu, Z.: Ultrasound-induced organogel formation followed by thin film fabrication via simple doctor blading technique for field-effect transistor applications. ACS Appl. Mater. Interfaces 8, 18991 (2016)

    Article  CAS  Google Scholar 

  136. Brown, T.M., De Rossi, F., Di Giacomo, F., Mincuzzi, G., Zardetto, V., Reale, A., Di Carlo, A.: Progress in flexible dye solar cell materials, processes and devices. J. Mater. Chem. A 2, 10788 (2014)

    Article  CAS  Google Scholar 

  137. Schneider, A., Traut, N., Hamburger, M.: Analysis and optimization of relevant parameters of blade coating and gravure printing processes for the fabrication of highly efficient organic solar cells. Sol. Energy Mater Sol. Cells 126, 149 (2014)

    Article  CAS  Google Scholar 

  138. Mallajosyula, A.T., Fernando, K., Bhatt, S., Singh, A., Alphenaar, B.W., Blancon, J.C., Nie, W., Gupta, G., Mohite, A.D.: Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Appl. Mater. Today 3, 96 (2016)

    Article  Google Scholar 

  139. Deng, Y., Peng, E., Shao, Y., Xiao, Z., Dong, Q., Huang, J.: Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 8, 1544 (2015)

    Article  CAS  Google Scholar 

  140. Chen, W., Du, W., Sun, Y., Zhang, H., Zhang, X., Zhan, Y., Sun, Z.: Improving the efficiency of hole-conductor-free carbon-based planar perovskite solar cells with long-term stability by using the hydrazine acetate additive via the one-step method. ACS Appl. Electron. Mater. 3, 5211 (2021)

    Article  CAS  Google Scholar 

  141. Gao, L., Zhou, Y., Meng, F., Li, Y., Liu, A., Li, Y., Zhang, C., Fan, M., Wei, G., Ma, T.: Several economical and eco-friendly bio-carbon electrodes for highly efficient perovskite solar cells. Carbon 162, 267 (2020)

    Article  CAS  Google Scholar 

  142. Babu, V., Fuentes Pineda, R., Ahmad, T., Alvarez, A.O., Castriotta, L.A., Di Carlo, A., Fabregat-Santiago, F., Wojciechowski, K.: Improved stability of inverted and flexible perovskite solar cells with carbon electrode. ACS Appl. Energy Mater. 3, 5126 (2020)

    Article  CAS  Google Scholar 

  143. Wan, Z., Xu, M., Fu, Z., Li, D., Mei, A., Hu, Y., Rong, Y., Han, H.: Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells. Front. Optoelectron. 12, 344 (2019)

    Article  Google Scholar 

  144. Horwood, R.J.: Towards a better understanding of screen print thickness control. Electrocomp. Sci. Technol. 1, 129 (1974)

    Article  Google Scholar 

  145. Leach, R.: The Printing Ink Manual. Springer, Berlin (2012)

    Google Scholar 

  146. Phung, T.H., Gafurov, A.N., Kim, I., Kim, S.Y., Kim, K.M., Lee, T.M.: IoT device fabrication using roll-to-roll printing process. Sci. Rep. 11, 1 (2021)

    Article  CAS  Google Scholar 

  147. Li, D., Jiang, P., Zhang, W., Du, J., Qiu, C., Liu, J., Hu, Y., Rong, Y., Mei, A., Han, H.: Series resistance modulation for large-area fully printable mesoscopic perovskite solar cells. Solar RRL 1, 1 (2021). https://doi.org/10.1002/solr.202100554

    Article  CAS  Google Scholar 

  148. Raptis, D., Stoichkov, V., Meroni, S.M., Pockett, A., Worsley, C.A., Carnie, M., Worsley, D.A., Watson, T.: Enhancing fully printable mesoscopic perovskite solar cell performance using integrated metallic grids to improve carbon electrode conductivity. Curr. Appl. Phys. 20, 619 (2020)

    Article  Google Scholar 

  149. Kartikay, P., Yella, A., Mallick, S.: Binder-solvent effects on low temperature-processed carbon-based, hole-transport layer free perovskite solar cells. Mater. Chem. Phys. 256, 123594 (2020)

    Article  CAS  Google Scholar 

  150. Kim, J., Lee, G., Lee, K., Yu, H., Lee, J.W., Yoon, C.M., Kim, S.G., Kim, S.K., Jang, J.: Fluorine plasma treatment on carbon-based perovskite solar cells for rapid moisture protection layer formation and performance enhancement. Chem. Commun. 56, 535 (2020)

    Article  CAS  Google Scholar 

  151. Zhu, S., Tian, J., Zhang, J., Gao, C., Liu, X.: Improving the interfacial contact of screen-printed carbon electrodes for perovskite solar cells. ACS Appl. Energy Mater. 4, 5554 (2021)

    Article  CAS  Google Scholar 

  152. Bishop, J.E., Mohamad, D.K., Wong-Stringer, M., Smith, A., Lidzey, D.G.: Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2. Sci. Rep. 7, 1 (2017)

    Article  CAS  Google Scholar 

  153. Bishop, J.E., Routledge, T.J., Lidzey, D.G.: Advances in spray-cast perovskite solar cells. J. Phys. Chem. Lett. 9, 1977 (2018)

    Article  CAS  Google Scholar 

  154. Girotto, C., Rand, B.P., Genoe, J., Heremans, P.: Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells. Sol. Energy Mater Sol. Cells 93, 454 (2009)

    Article  CAS  Google Scholar 

  155. Park, N.G., Zhu, K.: Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333 (2020)

    Article  CAS  Google Scholar 

  156. Pham, N.P., Burghartz, J.N., Sarro, P.M.: Spray coating of photoresist for pattern transfer on high topography surfaces. J. Micromech. Microeng. 15, 691 (2005)

    Article  CAS  Google Scholar 

  157. Gilissen, K., Stryckers, J., Verstappen, P., Drijkoningen, J., Heintges, G.H., Lutsen, L., Manca, J., Maes, W., Deferme, W.: Ultrasonic spray coating as deposition technique for the light-emitting layer in polymer LEDs. Org. Electron. 20, 31 (2015)

    Article  CAS  Google Scholar 

  158. Samanta, A., Bordes, R.: Conductive textiles prepared by spray coating of water-based graphene dispersions. RSC Adv. 10, 2396 (2020)

    Article  CAS  Google Scholar 

  159. Lee, D.S., Ki, M.J., Lee, H.J., Park, J.K., Hong, S.Y., Kim, B.W., Heo, J.H., Im, S.H.: Fully scalable and stable CsPbI2Br solar cells realized by an all-spray-coating process. ACS Appl. Mater. Interfaces 14, 7926 (2022)

    Article  CAS  Google Scholar 

  160. Zhang, C., Liang, S., Liu, W., Eickemeyer, F.T., Cai, X., Zhou, K., Bian, J., Zhu, H., Zhu, C., Wang, N., Wang, Z., Zhang, J., Wang, Y., Hu, J., Ma, H., Xin, C., Zakeeruddin, S.M., Grätzel, M., Shi, Y.: Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nat. Energy 6, 1154 (2021)

    Article  CAS  Google Scholar 

  161. Ervasti, H., Järvinen, T., Pitkänen, O., Bozó, É., Hiitola-Keinänen, J., Huttunen, O.H., Hiltunen, J., Kordas, K.: Inkjet-deposited single-wall carbon nanotube micropatterns on stretchable PDMS-Ag substrate–electrode structures for piezoresistive strain sensing. ACS Appl. Mater. Interfaces 13, 27284 (2021)

    Article  CAS  Google Scholar 

  162. Wei, Z., Chen, H., Yan, K., Yang, S.: Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem. 126, 13455 (2014)

    Article  Google Scholar 

  163. Ghahremani, A.H., Ratnayake, D., Sherehiy, A., Popa, D.O., Druffel, T.: Automated fabrication of perovskite photovoltaics using inkjet printing and intense pulse light annealing. Energy Technol. 9, 2100452 (2021)

    Article  CAS  Google Scholar 

  164. Whitaker, J.B., Kim, D.H., Larson, B.W., Zhang, F., Berry, J.J., Van Hest, M.F., Zhu, K.: Scalable slot-die coating of high performance perovskite solar cells. Sustain. Energy Fuels 2, 2442 (2018)

    Article  CAS  Google Scholar 

  165. Jeon, I., Yoon, J., Kim, U., Lee, C., Xiang, R., Shawky, A., Xi, J., Byeon, J., Lee, H.M., Choi, M., Maruyama, S., Matsuo, Y.: High-performance solution-processed double-walled carbon nanotube transparent electrode for perovskite solar cells. Adv. Energy Mater. 9, 1901204 (2019)

    Article  CAS  Google Scholar 

  166. Verma, A., Martineau, D., Hack, E., Makha, M., Turner, E., Nüesch, F., Heier, J.: Towards industrialization of perovskite solar cells using slot die coating. J. Mater. Chem. C 8, 6124 (2020)

    Article  CAS  Google Scholar 

  167. Tyona, M.D.: A theoritical study on spin coating technique. Adv. Mater. Res. 2, 195 (2013)

    Article  Google Scholar 

  168. Karavioti, A., Vitoratos, E., Stathatos, E.: Improved performance and stability of hole-conductor-free mesoporous perovskite solar cell with new amino-acid iodide cations. J. Mater. Sci. Mater. Electron. 31, 6109 (2020)

    Article  CAS  Google Scholar 

  169. Hu, Y., Si, S., Mei, A., Rong, Y., Liu, H., Li, X., Han, H.: Stable large-area (10×10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Solar RRL 1, 1600019 (2017)

    Article  CAS  Google Scholar 

  170. Su, H., Xiao, J., Li, Q., Peng, C., Zhang, X., Mao, C., Yao, Q., Lu, Y., Ku, Z., Zhong, J., Li, W., Peng, Y., Huang, F., Cheng, Y.B.: Carbon film electrode based square-centimeter scale planar perovskite solar cells exceeding 17% efficiency. Mater. Sci. Semicond. Process 107, 104809 (2020)

    Article  CAS  Google Scholar 

  171. Verma, A., Martineau, D., Abdolhosseinzadeh, S., Heier, J., Nüesch, F.: Inkjet printed mesoscopic perovskite solar cells with custom design capability. Mater. Adv. 1, 153 (2020)

    Article  CAS  Google Scholar 

  172. Xu, M., Ji, W., Sheng, Y., Wu, Y., Cheng, H., Meng, J., Yan, Z., Xu, J., Mei, A., Hu, Y., Rong, Y., Han, H.: Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-die coating. Nano Energy 74, 104842 (2020)

    Article  CAS  Google Scholar 

  173. Zhang, J., Hu, X., Li, H., Ji, K., Li, B., Liu, X., Xiang, Y., Hou, P., Liu, C., Wu, Z., Shen, Y., Stanks, S.D., Silva, S.R.P., Cheng, H.M., Zhang, W.: High-performance ITO-free perovskite solar cells enabled by single-walled carbon nanotube films. Adv. Func. Mater. 31, 2104396 (2021)

    Article  CAS  Google Scholar 

  174. Jin, J., Li, J., Tai, Q., Chen, Y., Mishra, D.D., Deng, W., Xin, J., Guo, S., Xiao, B., Wang, X.: Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon electrode without hole transport materials. J. Power Sour. 482, 228953 (2021)

    Article  CAS  Google Scholar 

  175. Luo, Q., Ma, H., Hou, Q., Li, Y., Ren, J., Dai, X., Yao, Z., Zhou, Y., Xiang, L., Du, H., He, H., Wang, N., Jiang, K., Lin, H., Zhang, H., Guo, Z.: All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Func. Mater. 28, 1706777 (2018)

    Article  CAS  Google Scholar 

  176. Peng, C., Su, H., Li, J., Duan, Q., Li, Q., Xiao, J., Ku, Z., Zhong, J., Li, W., Peng, Y., Huang, F., Cheng, Y.B.: Scalable, efficient and flexible perovskite solar cells with carbon film based electrode. Sol. Energy Mater Sol. Cells 230, 111226 (2021)

    Article  CAS  Google Scholar 

  177. Yoon, J., Kim, U., Yoo, Y., Byeon, J., Lee, S.K., Nam, J.S., Kim, K., Zhang, Q., Kauppinen, E.I., Maruyama, S., Lee, P., Jeon, I.: Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor. Adv. Sci. 8, 2004092 (2021)

    Article  CAS  Google Scholar 

  178. Hussain, I., Chowdhury, A.R., Jaksik, J., Grissom, G., Touhami, A., Ibrahim, E.E., Schauer, M., Okoli, O., Uddin, M.J.: Conductive glass free carbon nanotube micro yarn based perovskite solar cells. Appl. Surf. Sci. 478, 327 (2019)

    Article  CAS  Google Scholar 

  179. Eperon, G.E., Burlakov, V.M., Goriely, A., Snaith, H.J.: Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8, 591 (2014)

    Article  CAS  Google Scholar 

  180. Xia, R., Brabec, C.J., Yip, H.L., Cao, Y.: High-throughput optical screening for efficient semitransparent organic solar cells. Joule 3, 2241 (2019)

    Article  CAS  Google Scholar 

  181. Dou, Y., Liu, Z., Wu, Z., Liu, Y., Li, J., Leng, C., Fang, D., Liang, G., Xiao, J., Li, W., Wei, X., Huang, F., Cheng, Y.B., Zhong, J.: Self-augmented ion blocking of sandwiched 2D/1D/2D electrode for solution processed high efficiency semitransparent perovskite solar cell. Nano Energy 71, 104567 (2020)

    Article  CAS  Google Scholar 

  182. Jang, C.W., Kim, J.M., Choi, S.H.: Lamination-produced semi-transparent/flexible perovskite solar cells with doped-graphene anode and cathode. J. Alloys Compd. 775, 905 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The University of Suwon, 2020 (2021-0098) and Advanced Materials Analysis Center, University of Suwon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhyun Kim.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or no personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Yun, A.J., Park, B. et al. Recent Progress in Carbon Electrodes for Efficient and Cost-Benign Perovskite Optoelectronics. Electron. Mater. Lett. 18, 232–255 (2022). https://doi.org/10.1007/s13391-022-00340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00340-0

Keywords

Navigation