Skip to main content
Log in

Fabrication of h-BN Filled Epoxy-Based Thermally Conductive Adhesive Tapes Containing Cyclic Carbonate-Terminated Oligomers

  • Original Article - Chemistry and Biomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Thermally conductive (TC) adhesive tapes consisting of adhesives and TC fillers are widely used as thermal interface materials because of their tack properties for temporary fixation and high peel strength for permanent bond. However, the trade-off between peel strength and thermal conductivity with increasing filler loading impedes the manufacture of high-performance TC tapes. Therefore, a technique to realize high thermal conductivity of TC adhesives with lower filler loading is crucial. In this study, epoxy-based adhesives (EAs) was used to fabricate TC adhesive tapes. To secure high peel strength of EAs, a cyclic carbonate-terminated oligomer (CCO) was synthesized and employed as a component. The simultaneous reactions between epoxy resin, CCO and curing agent were analyzed using FTIR spectroscopy. Thanks to tack, the partially cured EAs could be used to fabricate tapes which were temporarily fixed and then permanently bonded via complete curing. Next, EAs and h-BN fillers were admixed to produce TC adhesive tapes. Because h-BN fillers were partially aligned to the in-plane direction by bar-coating, the in-plane thermal conductivity of the TC-1 adhesive containing only 20 wt% h-BN fillers was as high as 2.73 W/m K, which was slightly lower than that (2.97 W/m⋅K) of the TC-4 adhesive containing 35 wt% h-BN fillers. In addition, the peel strength of the TC-1 adhesive tape reached 2307 (± 64) gf/in.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim, J.-W., Lee, D.H., Jeon, H.-J., Jang, S.I., Cho, H.M., Kim, Y.: Recyclable thermosetting thermal pad using silicone-based polyurethane crosslinked by Diels-Alder adduct. Appl. Surf. Sci. 429, 128–133 (2018)

    Article  CAS  Google Scholar 

  2. Anis, B., Fllah, H.E., Ismail, T., Fathallah, W.M., Khalil, A.S.G., Hemeda, O.M., Badr, Y.A.: Preparation, characterization, and thermal conductivity of polyvinyl-formaldehyde/MWCNTs foam: a low cost heat sink substrate. J. Mater. Res. Technol. 9, 2934–2945 (2020)

    Article  CAS  Google Scholar 

  3. Kang, J.S., Li, M., Wu, H., Nguyen, H., Hu, Y.: Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018)

    Article  CAS  Google Scholar 

  4. Sun, J., Zhuang, J., Jiang, H., Huang, Y., Zheng, X., Liu, Y., Wu, D.: Thermal dissipation performance of metal-polymer composite heat exchanger with V-shape microgrooves: a numerical and experimental study. Appl. Therm. Eng. 121, 492–500 (2017)

    Article  CAS  Google Scholar 

  5. Zhang, Y., Ma, J., Wei, N., Yang, J., Pei, Q.-X.: Recent progress in the development of thermal interface materials: a review. PCCP 23, 753–776 (2021)

    Article  CAS  Google Scholar 

  6. Song, H., Liu, J., Liu, B., Wu, J., Cheng, H.-M., Kang, F.: Two-dimensional materials for thermal management applications. Joule 2, 442–463 (2018)

    Article  CAS  Google Scholar 

  7. Wang, S., Liu, Y., Guo, Y., Lu, Y., Huang, Y., Xu, H., Wu, D., Sun, J.: Optimal analysis for thermal conductivity variation of EVA/SCF composites prepared by spatial confining forced network assembly. Mater. Today Commun. 25, 101206 (2020)

    Article  CAS  Google Scholar 

  8. Wu, S.-J., Hsu, H.-C., Fu, S.-L., Yeh, J.-N.: Numerical simulation of high power LED heat-dissipating system. Elect. Mater. Lett. 10, 497–502 (2014)

  9. Xu, Y., Chung, D.D.L., Mroz, C.: Thermally conducting aluminum nitride polymer-matrix composites. Compos. Part A Appl. Sci. Manuf. 32, 1749–1757 (2001)

    Article  Google Scholar 

  10. Zhang, J., Li, X., Zhang, G., Wang, Y., Guo, J., Wang, Y., Huang, Q., Xiao, C., Zhong, Z.: Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management. Energy Convers. Manage. 204, 112319 (2020)

    Article  CAS  Google Scholar 

  11. Wang, H., Li, L., Wei, X., Hou, X., Li, M., Wu, X., Li, Y., Lin, C.-T., Jiang, N., Yu, J.: Combining alumina particles with three-dimensional alumina foam for high thermally conductive epoxy composites. ACS Appl. Polym. Mater. 3, 216–225 (2021)

    Article  CAS  Google Scholar 

  12. Xiao, C., Chen, L., Tang, Y., Zhang, X., Zheng, K., Tian, X.: Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity. Compos. Part A Appl. Sci. Manuf. 124, 105511 (2019)

    Article  CAS  Google Scholar 

  13. Yu, C., Zhang, J., Tian, W., Fan, X., Yao, Y.: Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites. RSC Adv. 8, 21948–21967 (2018)

    Article  CAS  Google Scholar 

  14. Hutchinson, J.M., Román, F., Folch, A.: Epoxy-Thiol systems filled with boron nitride for high thermal conductivity applications. Polymers 10, 340 (2018)

    Article  Google Scholar 

  15. Cui, H.-w., Li, D.-s., Fan, Q.: Using nano hexagonal boron nitride particles and nano cubic silicon carbide particles to improve the thermal conductivity of electrically conductive adhesives. Elect. Mater. Lett. 9, 1–5 (2013)

  16. Malekpour, H., Chang, K.H., Chen, J.C., Lu, C.Y., Nika, D.L., Novoselov, K.S., Balandin, A.A.: Thermal conductivity of graphene laminate. Nano Lett. 14, 5155–5161 (2014)

    Article  CAS  Google Scholar 

  17. Lee, H.-J., Lim, G., Yang, E., Kim, Y.-S., Kwak, M.-G., Kim, Y.: Thermally conductive film fabricated using perforated graphite sheet and UV-curable pressure-sensitive adhesive. Nanomaterials 11, 93 (2021)

    Article  CAS  Google Scholar 

  18. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  CAS  Google Scholar 

  19. Kim, G., Kim, W., Lee, W.: Intercorrelated relationship between the thermoelectric performance and mechanical reliability of Mg2Si-reduced graphene oxide nanocomposites. Elect. Mater. Lett. 16, 174–179 (2020)

  20. Bindushree, N., Dhabale, A., Dhanush, M.S., Honakeri, A., Ankit, A., Anusha, M.K., Kumar, R., Choudhary, H.K., Khopkar, V., Sekhar, K.C., Sahoo, B.: Role of composition in enhancing heat transfer behavior of carbon nanotube-ethylene glycol based nanofluids. Elect. Mater. Lett. 16, 595–603 (2020)

  21. Sharma, V., Kagdada, H.L., Jha, P.K., Śpiewak, P., Kurzydłowski, K.J.: Thermal transport properties of boron nitride based materials: a review. Renew. Sustain. Energy Rev. 120, 109622 (2020)

    Article  CAS  Google Scholar 

  22. Hodgin, M. J., Estes, R. H.: Advanced Boron Nitride epoxy formulations excel in thermal management applications. In: Proceedings of the NEPCON WEST ‘99, Anaheim, pp. 359–366 (1999)

  23. Mittal, G., Park, S.J., Rhee, K.Y.: Acrylic pressure-sensitive adhesive reinforced with aluminum nitride and its thermal properties: effect of surface treatment and particle size. Coatings 10, 188 (2020)

    Article  CAS  Google Scholar 

  24. Ghim, D., Kim, J.H.: Fabrication of acrylic copolymer with aluminum nitride fillers and its physical and thermal properties. Korean J. Chem. Eng. 34, 245–248 (2017)

    Article  CAS  Google Scholar 

  25. Vu, M.C., Bae, Y.H., Yu, M.J., Choi, W.-K., Islam, M.A., Kim, S.-R.: Thermally conductive adhesives from covalent-bonding of reduced graphene oxide to acrylic copolymer. J. Adhes. 95, 887–910 (2019)

    Article  CAS  Google Scholar 

  26. Kim, J.K., Kim, J.W., Kim, M.I., Song, M.S.: Thermal conductivity and adhesion properties of thermally conductive pressure-sensitive adhesives. Macromol. Res. 14, 517–523 (2006)

    Article  CAS  Google Scholar 

  27. Hong, H., Kim, J.U., Kim, T.-I.: Effective assembly of nano-ceramic materials for high and anisotropic thermal conductivity in a polymer composite. Polymers 9, 413 (2017)

    Article  Google Scholar 

  28. Shen, H., Guo, J., Wang, H., Zhao, N., Xu, J.: Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Interfaces 7, 5701–5708 (2015)

    Article  CAS  Google Scholar 

  29. Lambeth, R.H., Rizvi, A.: Mechanical and adhesive properties of hybrid epoxy-polyhydroxyurethane network polymers. Polymer 183, 121881 (2019)

    Article  CAS  Google Scholar 

  30. Ke, J., Li, X., Jiang, S., Wang, J., Kang, M., Li, Q., Zhao, Y.: Critical transition of epoxy resin from brittleness to toughness by incorporating CO2-sourced cyclic carbonate. J. CO2 Util. 26, 302–313 (2018)

  31. Kamphuis, A.J., Picchioni, F., Pescarmona, P.P.: CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chem. 21, 406–448 (2019)

    Article  CAS  Google Scholar 

  32. Leitsch, E.K., Heath, W.H., Torkelson, J.M.: Polyurethane/polyhydroxyurethane hybrid polymers and their applications as adhesive bonding agents. Int. J. Adhes. Adhes. 64, 1–8 (2016)

    Article  CAS  Google Scholar 

  33. Konuray, A.O., Fernández-Francos, X., Ramis, X.: Analysis of the reaction mechanism of the thiol–epoxy addition initiated by nucleophilic tertiary amines. Polym. Chem. 8, 5934–5947 (2017)

    Article  CAS  Google Scholar 

  34. Bok, G., Lim, G., Park, K., Kim, Y.: Mechanical properties and fracture toughness of fumed silica epoxy composites containing glycidyl terminated polysiloxanes. Ceram. Int. (2021)

  35. Cornille, A., Blain, M., Auvergne, R., Andrioletti, B., Boutevin, B., Caillol, S.: A study of cyclic carbonate aminolysis at room temperature: effect of cyclic carbonate structures and solvents on polyhydroxyurethane synthesis. Polym. Chem. 8, 592–604 (2017)

    Article  CAS  Google Scholar 

  36. Nagarjuna, R., Saifullah, M.S.M., Ganesan, R.: Oxygen insensitive thiol–ene photo-click chemistry for direct imprint lithography of oxides. RSC Adv. 8, 11403–11411 (2018)

    Article  CAS  Google Scholar 

  37. Ramesh, S., Liew, C.-W.: Rheological characterizations of ionic liquid-based gel polymer electrolytes and fumed silica-based composite polymer electrolytes. Ceram. Int. 38, 3411–3417 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) [grant number 20016013, Development of adhesives stacked structure and evaluation technology for small and medium sized rollable OLED modules with excellent mechanical durability from minus 30 degrees to 80 degrees].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmin Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 98 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, G., Bok, G., Kim, YS. et al. Fabrication of h-BN Filled Epoxy-Based Thermally Conductive Adhesive Tapes Containing Cyclic Carbonate-Terminated Oligomers. Electron. Mater. Lett. 18, 145–152 (2022). https://doi.org/10.1007/s13391-021-00324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00324-6

Keywords

Navigation