Skip to main content
Log in

Electric Field Induced Dissociation of SiC Thin Films Leading to the Formation of Nanocrystalline Graphite

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Thin film Au–SiC–Cu and Au–SiC–Pt crossbar structures of 40μmx40μm size where all three layers are 100 nm thickness were fabricated by lithography. Decomposition of the SiC film is observed under the influence of an electric field (104–106 V/cm) applied between the Au bottom electrode and the top metal electrode (Cu or Pt) for a few cycles during the course of testing as a resistive switching structure. This is evidenced using Raman mapping and Raman spectroscopy techniques. The Raman spectra reveal peaks corresponding to the D and G bands of nanocrystalline graphite. Raman mapping at different locations indicates that most of the graphite forms at the interface between the metal electrode and SiC. Raman mapping images reveal the formation of graphite on the surface. This technique is simple and enables site-selective localized growth of nanocrystalline graphite which is expected to impact many nanoscale applications. It could also be extended to form graphene at the nanoscale.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Libera, J., Gogotsi, Y.: Hydrothermal synthesis of graphite tubes using Ni catalyst. Carbon 39, 1307–1318 (2001). https://doi.org/10.1016/S0008-6223(00)00263-3

    Article  CAS  Google Scholar 

  2. Zhang, J.T., Liu, S., Pan, G.L., Li, G.R., Gao, X.P.: A 3D hierarchical porous α-Ni(OH)2/graphite nanosheet composite as an electrode material for supercapacitors. J. Mater. Chem. A. 2, 1524–1529 (2014). https://doi.org/10.1039/c3ta13578k

    Article  CAS  Google Scholar 

  3. Hadi, M., Rouhollahi, A., Yousefi, M.: Nanocrystalline graphite-like pyrolytic carbon film electrode for electrochemical sensing of hydrazine. Sensors Actuators B Chem. 160, 121–128 (2011). https://doi.org/10.1016/j.snb.2011.07.022

    Article  CAS  Google Scholar 

  4. Rana, S., Reynolds, J.D., Ling, T.Y., Shamsudin, M.S., Pu, S.H., Chong, H.M.H., Pamunuwa, D.: Nano-crystalline graphite for reliability improvement in MEM relay contacts. Carbon 133, 193–199 (2018). https://doi.org/10.1016/j.carbon.2018.03.011

    Article  CAS  Google Scholar 

  5. Krivchenko, V.A., Pilevsky, A.A., Rakhimov, A.T., Seleznev, B.V., Suetin, N.V., Timofeyev, M.A., Bespalov, A.V., Golikova, O.L.: Nanocrystalline graphite: promising material for high current field emission cathodes. J. Appl. Phys. 107, 1126 (2010). https://doi.org/10.1063/1.3277054

    Article  CAS  Google Scholar 

  6. Basavalingu, B., Byrappa, K., Yoshimura, M., Madhusudan, P., Dayananda, A.S.: Hydrothermal synthesis and characterization of micro to nano sized carbon particles. J. Mater. Sci. 41, 1465–1469 (2006). https://doi.org/10.1007/s10853-006-7487-6

    Article  CAS  Google Scholar 

  7. Daviau, K., Lee, K.K.M.: Decomposition of silicon carbide at high pressures and temperatures. Phys. Rev. B. 96, 174102 (2017). https://doi.org/10.1103/PhysRevB.96.174102

    Article  Google Scholar 

  8. Mynbaeva, M.G., Lavrent’ev, A.A., Mynbaev, K.D.: Formation of graphite/sic structures by the thermal decomposition of silicon carbide. Semiconductors 50, 138–142 (2016). https://doi.org/10.1134/S1063782616010176

    Article  CAS  Google Scholar 

  9. Akshara, P.C., Rajaram, G., Krishna, M.G.: Single composite target magnetron sputter deposition of crystalline and amorphous SiC thin films. Mater. Res. Express. 5, 036410 (2018). https://doi.org/10.1088/2053-1591/aab3b0

    Article  CAS  Google Scholar 

  10. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  11. Beams, R., Gustavo Cançado, L., Novotny, L.: Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter (2015). https://doi.org/10.1088/0953-8984/27/8/083002

    Article  Google Scholar 

  12. Cançado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., Ferrari, A.C.: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011). https://doi.org/10.1021/nl201432g

    Article  CAS  Google Scholar 

  13. Dresselhaus, M.S., Jorio, A., Souza Filho, A.G., Saito, R.: Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5355–5377 (2010). https://doi.org/10.1098/rsta.2010.0213

    Article  CAS  Google Scholar 

  14. Tuinstra, F., Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970). https://doi.org/10.1063/1.1674108

    Article  CAS  Google Scholar 

  15. Wu, Y.Q., Ye, P.D., Capano, M.A., Xuan, Y., Sui, Y., Qi, M., Cooper, J.A., Shen, T., Pandey, D., Prakash, G., Reifenberger, R.: Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl. Phys. Lett. 92, 12–15 (2008). https://doi.org/10.1063/1.2889959

    Article  CAS  Google Scholar 

  16. Liu, F., Gutes, A., Laboriante, I., Carraro, C., Maboudian, R.: Graphitization of n-type polycrystalline silicon carbide for on-chip supercapacitor application. Appl. Phys. Lett. 99, 1–4 (2011). https://doi.org/10.1063/1.3638468

    Article  CAS  Google Scholar 

  17. Ciochoń, P., Bodek, Ł., Garb, M., Zając, Ł., Kołodziej, J.J.: Si beam-assisted graphitization of SiC (0001). Appl. Phys. A Mater. Sci. Process. 124, 1–9 (2018). https://doi.org/10.1007/s00339-018-2145-9

    Article  CAS  Google Scholar 

  18. Zhang, Z., Cai, W., Hong, R., Lin, D., Chen, X., Cai, J., Wu, Z.: Raman spectroscopy of multi-layer graphene epitaxially grown on 4H-SiC by joule heat decomposition. Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2606-2

    Article  Google Scholar 

  19. Kohno, H., Mori, Y., Ichikawa, S., Ohno, Y., Yonenaga, I., Takeda, S.: Transformation of a SiC nanowire into a carbon nanotube. Nanoscale 1, 344–346 (2009). https://doi.org/10.1039/b9nr00163h

    Article  CAS  Google Scholar 

  20. Kim, W.G., Rhee, S.W.: Effect of the top electrode material on the resistive switching of TiO2 thin film. Microelectron. Eng. 87, 98–103 (2010). https://doi.org/10.1016/j.mee.2009.05.023

    Article  CAS  Google Scholar 

  21. Jabeen, S., Ismail, M., Rana, A.M., Ahmed, E.: Impact of work function on the resistive switching characteristics of M/ZnO/CeO2/Pt devices. Mater. Res. Express. 4, 056401 (2017). https://doi.org/10.1088/2053-1591/aa6dec

    Article  CAS  Google Scholar 

  22. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). https://doi.org/10.1038/nmat2023

    Article  CAS  Google Scholar 

  23. Ielmini, D.: Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31, 063002 (2016). https://doi.org/10.1088/0268-1242/31/6/063002

    Article  CAS  Google Scholar 

  24. Papanicolaou, N., Christou, A., Gipe, M.L.: Pt and PtSix Schottky contacts on n-type β-SiC. J. Appl. Phys. 65, 3526 (1989). https://doi.org/10.1063/1.342626

    Article  CAS  Google Scholar 

  25. An, Z., Hirai, M., Kusaka, M., Iwami, M.: Surface and interface study of Cu (film)/SiC (substrate) system. Appl. Surf. Sci. 216, 169–173 (2003). https://doi.org/10.1016/S0169-4332(03)00459-8

    Article  CAS  Google Scholar 

  26. Zhong, L., Jiang, L., Huang, R., De Groot, C.H.: Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices. Appl. Phys. Lett. 104, 093507 (2014). https://doi.org/10.1063/1.4867198

    Article  CAS  Google Scholar 

  27. Lee, W., Park, J., Son, M., Lee, J., Jung, S., Kim, S., Park, S., Shin, J., Hwang, H.: Excellent state stability of Cu/SiC/Pt programmable metallization cells for nonvolatile memory applications. IEEE Electron Dev. Lett. 32, 680–682 (2011). https://doi.org/10.1109/LED.2011.2119370

    Article  CAS  Google Scholar 

  28. Akshara, P.C., Basu, N., Lahiri, J., Rajaram, G., Ghanashyam Krishna, M.: The role of graphitic filaments in resistive switching behaviour of amorphous silicon carbide thin films (2019). arXiv preprint arXiv:1908.04079[physics.app-ph]

Download references

Acknowledgements

The authors acknowledge facilities provided by the Central Facility for Nanotechnology, Centre for Advanced Studies in Electronics Science and Technology and School of Physics, University of Hyderabad under the UGC-DRS and DST-PURSE programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poreddy Chaitanya Akshara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akshara, P.C., Krishna, M.G., Rajaram, G. et al. Electric Field Induced Dissociation of SiC Thin Films Leading to the Formation of Nanocrystalline Graphite. Electron. Mater. Lett. 16, 231–238 (2020). https://doi.org/10.1007/s13391-020-00204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00204-5

Keywords

Navigation