Skip to main content
Log in

Preparation of Highly (002) Oriented Ti Films on a Floating Si (100) Substrate by RF Magnetron Sputtering

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The possibility of preparing highly (002) oriented Ti films on the Si (100) substrate was studied using RF sputtering. The deposition behavior was compared between floating and grounded substrates at room temperature. Highly (002) oriented Ti films could be successfully prepared on the floating Si (100) substrate, which was revealed by X-ray diffraction and high resolution transmission electron microscope. To understand the different deposition behavior between floating and grounded substrates, the incident energy of ions during RF sputtering was estimated from the substrate temperature measured by the K-type thermocouple. The incident energy on the floating substrate was lower by 20% than that on the grounded substrate. It was suggested that the lower incident energy on the floating substrate would be responsible for the deposition of highly (002) oriented Ti films at room temperature.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jackson, N., O’Keeffe, R., Waldron, F., O’Neill, M., Mathewson, A.: Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance. J. Micromech. Microeng. 23(7), 1–9 (2013). https://doi.org/10.1088/0960-1317/23/7/075014

    Article  CAS  Google Scholar 

  2. Tran, A.T., Wunnicke, O., Pandraud, G., Nguyen, M.D., Schellevis, H., Sarro, P.M.: Slender piezoelectric cantilevers of high quality AlN layers sputtered on Ti thin film for MEMS actuators. Sens. Actuators A Phys. 202, 118–123 (2013). https://doi.org/10.1016/j.sna.2013.01.047

    Article  CAS  Google Scholar 

  3. Ting, C., Wittmer, M.: The use of titanium-based contact barrier layers in silicon technology. Thin Solid Films 96, 327–345 (1982)

    Article  CAS  Google Scholar 

  4. Huang, L., Liu, B., Zhu, Q., Chen, S., Gao, M., Qin, F., Wang, D.: Low resistance Ti Ohmic contacts to 4H-SiC by reducing barrier heights without high temperature annealing. Appl. Phys. Lett. 100(26), 1–4 (2012). https://doi.org/10.1063/1.4730435

    Article  CAS  Google Scholar 

  5. Suzuki, M., Kawakami, T., Arai, T., Kobayashi, S., Koide, Y., Uemura, T., Shibata, N., Murakami, M.: Low-resistance Ta/Ti Ohmic contacts for p-type GaN. Appl. Phys. Lett. 74(2), 275–277 (1999). https://doi.org/10.1063/1.123279

    Article  CAS  Google Scholar 

  6. Kaur, M., Singh, K.: Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C Mater. Biol. Appl. 102, 844–862 (2019). https://doi.org/10.1016/j.msec.2019.04.064

    Article  CAS  Google Scholar 

  7. Boyer, R.R.: An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. a213, 103–114 (1996)

    Article  CAS  Google Scholar 

  8. Iriarte, G.F., Bjurstrom, J., Westlinder, J., Engelmark, F., Katardjiev, I.V.: Synthesis of C-axis-oriented AlN thin films on high-conducting layers_Al, Mo, Ti, TiN, and Ni. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(7), 1170–1174 (2005)

    Article  Google Scholar 

  9. Xiong, J., Gu, H.S., Hu, K., Hu, M.Z.: Influence of substrate metals on the crystal growth of AlN films. Int. J. Miner. Metall. Mater. 17(1), 98–103 (2010). https://doi.org/10.1007/s12613-010-0117-y

    Article  CAS  Google Scholar 

  10. Chawla, V., Jayaganthan, R., Chawla, A.K., Chandra, R.: Morphological study of magnetron sputtered Ti thin films on silicon substrate. Mater. Chem. Phys. 111(2–3), 414–418 (2008). https://doi.org/10.1016/j.matchemphys.2008.04.048

    Article  CAS  Google Scholar 

  11. Chawla, V., Jayaganthan, R., Chawla, A.K., Chandra, R.: Microstructural characterizations of magnetron sputtered Ti films on glass substrate. J. Mater. Process. Technol. 209(7), 3444–3451 (2009). https://doi.org/10.1016/j.jmatprotec.2008.08.004

    Article  CAS  Google Scholar 

  12. Chen, A.Y., Bu, Y., Tang, Y.T., Wang, Y., Liu, F., Xie, X.F., Gu, J.F.: Deposition-rate dependence of orientation growth and crystallization of Ti thin films prepared by magnetron sputtering. Thin Solid Films 574, 71–77 (2015). https://doi.org/10.1016/j.tsf.2014.10.053

    Article  CAS  Google Scholar 

  13. Jeyachandran, Y.L., Karunagaran, B., Narayandass, S.K., Mangalaraj, D.: The effect of thickness on the properties of titanium films deposited by dc magnetron sputtering. Mater. Sci. Eng., A 458(1–2), 361–365 (2007). https://doi.org/10.1016/j.msea.2006.12.088

    Article  CAS  Google Scholar 

  14. Tetsu Miyoshi, Y.H., Nittono, O.: Microstructure and preferred orientation in pure titanium films deposited by two-facing-target-type dc sputtering. Thin Solid Films 281–282, 128–131 (1996). https://doi.org/10.1016/0040-6090(96)08592-6

    Article  Google Scholar 

  15. Muslim, N., Soon, Y.W., Lim, C.M., Voo, N.Y.: Influence of sputtering power on properties of titanium thin films deposited by rf magnetron sputtering. ARPN J. Eng. Appl. Sci. 10(16), 7148–7189 (2015)

    Google Scholar 

  16. Maissel, L.I., Schaible, P.M.: Thin films deposited by bias sputtering. J. Appl. Phys. 36(1), 237–242 (1965). https://doi.org/10.1063/1.1713883

    Article  Google Scholar 

  17. Smidt, F.A.: Use of ion beam assisted deposition to modify the microstructure and properties of thin films. Int. Mater. Rev. 35, 61–128 (1990)

    Article  CAS  Google Scholar 

  18. Zhang, L., Shi, L.Q., He, Z.J., Zhang, B., Lu, Y.F., Liu, A., Wang, B.Y.: Deposition of dense and smooth Ti films using ECR plasma-assisted magnetron sputtering. Surf. Coat. Technol. 203(22), 3356–3360 (2009). https://doi.org/10.1016/j.surfcoat.2009.04.022

    Article  CAS  Google Scholar 

  19. Burton, A.W., Ong, K., Rea, T., Chan, I.Y.: On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater. 117(1–2), 75–90 (2009). https://doi.org/10.1016/j.micromeso.2008.06.010

    Article  CAS  Google Scholar 

  20. Hoshi, Y., Suzuki, E., Shimizu, H.: Control of crystal orientation of Ti thin films by sputtering. Electrochim. Acta 44, 3945–3952 (1999)

    Article  CAS  Google Scholar 

  21. Kersten, H., Rohde, D., Berndt, J., Deutsch, H., Hippler, R.: Investigations on the energy influx at plasma processes by means of a simple thermal probe. Thin Solid Films 377–378, 585–591 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIT) (No. NRF-2013M3A6B1078874) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2015R1A5A1037627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong-Moon Hwang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, J.H., Kim, D.Y., Kim, KS. et al. Preparation of Highly (002) Oriented Ti Films on a Floating Si (100) Substrate by RF Magnetron Sputtering. Electron. Mater. Lett. 16, 14–21 (2020). https://doi.org/10.1007/s13391-019-00182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00182-3

Keywords

Navigation