Skip to main content
Log in

Numerical Study of Turbulent Nanofluid Flow in Double-Tube Heat Exchanger: The Role of Second Law Analysis

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper flow features and heat transfer characteristics of finned and finless double-tube counter flow heat exchanger at wide range of Reynolds numbers were numerically analyzed. Various fins configurations combined with use of water-based TiO2 nanofluid at different nanoparticles volume concentrations were employed in this study to show their effects on nanofluid Nusselt number, friction factor and thermal performance index. Furthermore, the thermal perfection and the overall assessment of heat exchanger were also taken into account in the light of thermodynamics second law efficiency which is defined as a ratio of recovered to expended exergy. The results showed that thermo-hydrodynamical performance of heat exchanger was intensively dependent to the thickness of embedded fins. Employed sensitivity analysis revealed that fins with large thicknesses equal or larger than 10 mm provide better thermal performance than fins with small thicknesses (i.e. t = 1 mm). Furthermore, the use of circular fin with thickness as large as 10 mm at the highest Reynolds number up to about 87,500 led to pronounce both Nusselt number and flow resistance up to 15% and 4.64 folds, respectively. On the other hand, using smooth heat exchanger operating at the lowest Reynolds number (i.e. Re = 3400) filled with 1% TiO2 water-based nanofluid led to obtain the highest recovered exergy and thermodynamic second law efficiency up to 0.46 W and 10.33%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Heat transfer surface area (m2)

C 2 :

Model constant

C p :

Specific heat at constant pressure \((\frac{\mathrm{J}}{\mathrm{kg K}})\)

\({C}_{\mu }\) :

Model parameter

D :

Tube diameter (m)

D h :

Hydraulic diameter (m)

f :

Friction factor

h :

Heat transfer coefficient (W/m2 K), fin height (m)

k :

Turbulent kinetic energy (m2/s2), thermal conductivity (W/mK)

k b :

Boltzmann number

L :

Length of tube (m)

\(\dot{m}\) :

Mass flow rate (kg/s)

Nu :

Nusselt number (hDh/K)

p :

Pressure (Pa)

Pr :

Prandtl number \(\left({C}_{p}\mu /\mathrm{K}\right)\)

q :

Heat flux (W/m2)

Q :

Heat transfer rate (W)

Re :

Reynolds number \((\rho u{D}_{h}/\mu )\)

S :

Fin spacing (m)

s :

Specific entropy \((\frac{\mathrm{J}}{\mathrm{K}})\)

t :

Fin thickness (m)

T :

Temperature (K)

u :

Velocity component in flow direction (m/s)

W :

Work (J)

Y + :

Dimensionless distance from wall

\(\Delta\) :

Difference operator

\({\delta }_{ij}\) :

Delta Kronecker

\(\varepsilon\) :

Turbulent dissipation rate, m2/s3

\(\mu\) :

Dynamic viscosity, kg/m s

\(\rho\) :

Density, kg/m3

\(\alpha\) :

Thermal diffusivity (m2/s)

\(\nu\) :

Kinematic viscosity (m2/s), specific volume (1/m3)

\({\sigma }_{\tau }\) :

Turbulent Prandtl number in energy equation

\({\sigma }_{k}\) :

Diffusion Prandtl number for \(k\)

\({\sigma }_{\varepsilon }\) :

Diffusion Prandtl number for \(\varepsilon\)

\(\mathrm{\varnothing }\) :

Nanoparticles volume concentration

\(\psi\) :

Specific flow exergy

\(\dot{X}\) :

Exergy rate

\({\eta }_{\mathrm{\rm I}\mathrm{\rm I}}\) :

Second law efficiency

\({\eta }_{\mathrm{t}-\mathrm{h}}\) :

Thermo-hydrodynamical performance index

ave:

Average

hw:

Hot water

b:

Bulk quantity

bf:

Base fluid

fr:

Freezing

in:

Inlet

IT:

Inner tube

\(i,j,k\) :

Spatial indices

m:

Mean value

nf:

Nanofluid

out:

Outlet

p:

Nanoparticle

s:

Smooth, surface area

t:

Turbulent quantity

t-h:

Thermo-hydrodynamic

w:

Wall

CFD:

Computational fluid dynamics

UDF:

User-defined function

DTCHEX:

Double-tube counter flow heat exchanger

References

  1. Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57(2), 582–594 (2013)

    Google Scholar 

  2. Azmi, W.H.; Sharif, M.Z.; Yusof, T.M.; Mamat, R.; Redhwan, A.A.M.: Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system–a review. Renew. Sustain. Energy Rev. 69, 415–428 (2017)

    Google Scholar 

  3. Sharma, S.: Fabricating an experimental setup to investigate the performance of an automobile car radiator by using aluminum/water nanofluid. J. Therm. Anal. Calorim. 133(3), 1387–1406 (2018)

    Google Scholar 

  4. Ghanbari, S.; Javaherdeh, K.: Investigation of applying nanoporous graphene non-Newtonian nanofluid on rheological properties and thermal performance in a turbulent annular flow with perforated baffles. J. Therm. Anal. Calorim. 139(1), 629–647 (2020)

    Google Scholar 

  5. Ahmad, S.; Pop, I.: Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. Int. Commun. Heat Mass Transfer 37(8), 987–991 (2010)

    Google Scholar 

  6. Tuncer, A.D.; Sözen, A.; Khanlari, A.; Gürbüz, E.Y.; Variyenli, H.I.: Upgrading the performance of a new shell and helically coiled heat exchanger by using longitudinal fins. Appl. Therm. Eng. 191, 116876 (2021)

    Google Scholar 

  7. Roy, N.C.: Natural convection of nanofluids in a square enclosure with different shapes of inner geometry. Phys. Fluids 30(11), 113605 (2018)

    Google Scholar 

  8. Roy, N.C.: MHD natural convection of a hybrid nanofluid in an enclosure with multiple heat sources. Alex. Eng. J. 61(2), 1679–1694 (2022)

    Google Scholar 

  9. Roy, N.C.: Augmentation in heat transfer for a hybrid nanofluid flow over a roughened surface. Case Stud. Therm. Eng. 27, 101215 (2021)

    Google Scholar 

  10. Bahiraei, M.; Mazaheri, N.; Rizehvandi, A.: Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs. Appl. Therm. Eng. 149, 588–601 (2019)

    Google Scholar 

  11. Pak, B.C.; Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 11(2), 151–170 (1998)

    Google Scholar 

  12. Duangthongsuk, W.; Wongwises, S.: Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. Int. Commun. Heat Mass Transf. 35(10), 1320–1326 (2008)

    Google Scholar 

  13. Duangthongsuk, W.; Wongwises, S.: An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int. J. Heat Mass Transf. 53(1–3), 334–344 (2010)

    Google Scholar 

  14. Qi, C.; Luo, T.; Liu, M.; Fan, F.; Yan, Y.: Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Convers. Manag. 197, 111877 (2019)

    Google Scholar 

  15. Bahmani, M.H.; Sheikhzadeh, G.; Zarringhalam, M.; Akbari, O.A.; Alrashed, A.A.; Ahmadi Sheikh Shabani, G.; Goodarzi, M.: Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Ad. Powder Technol. 29(2), 273–282 (2018)

    Google Scholar 

  16. Rashidi, S.; Eskandarian, M.; Mahian, O.; Poncet, S.J.J.O.T.A.: Combination of nanofluid and inserts for heat transfer enhancement. J. Therm. Anal. Calorim. 135(1), 437–460 (2019)

    Google Scholar 

  17. Hamza, N.F.A.; Aljabair, S.: Evaluation of thermal performance factor by hybrid nanofluid and twisted tape inserts in heat exchanger. Heliyon. 2022, e11950 (2022)

    Google Scholar 

  18. Sivasankaran, S.; Bhuvaneswari, M.: Numerical study on influence of water based hybrid nanofluid and porous media on heat transfer and pressure loss. Case Stud. Therm. Eng. 34, 102022 (2022)

    Google Scholar 

  19. Rabby, M.I.I.; Sharif, M.A.R.; Hossain, F.: Numerical study of laminar convective heat transfer from a corrugated pipe into an Al2O3–AlN/H2O hybrid nanofluid. Case Stud. Therm. Eng. 39, 102454 (2022)

    Google Scholar 

  20. Elias, M.M.; Shahrul, I.M.; Mahbubul, I.M.; Saidur, R.; Rahim, N.A.: Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. Int. J. Heat Mass Transf. 70, 289–297 (2014)

    Google Scholar 

  21. Targui, N.; Kahalerras, H.: Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow. Energy Convers. Manag. 76, 43–54 (2013)

    Google Scholar 

  22. Bashi, M.; Rashidi, S.; Esfahani, J.A.: Exergy analysis for a plate-fin triangular duct enhanced by a porous material. Appl. Therm. Eng. 110, 1448–1461 (2017)

    Google Scholar 

  23. Mozafarie, S.S.; Javaherdeh, K.; Ghanbari, O.: Numerical simulation of nanofluid turbulent flow in a double-pipe heat exchanger equipped with circular fins. J. Therm. Anal. Calorim. 143(6), 4299–4311 (2021)

    Google Scholar 

  24. Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M.: Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery. Energy Convers. Manag. 97, 26–41 (2015)

    Google Scholar 

  25. Chen, H.; Ding, Y.; He, Y.; Tan, C.: Rheological behavior of ethylene glycol based titania nanofluids. Chem. Phys. Lett. 444(4–6), 333–337 (2007)

    Google Scholar 

  26. Yang, L.; Hu, Y.: Toward TiO2 nanofluids—part 1: preparation and properties. Nanoscale Res. Lett. 12(1), 1–21 (2017)

    Google Scholar 

  27. Mohammadi, M.; Abadeh, A.; Nemati-Farouji, R.; Passandideh-Fard, M.: An optimization of heat transfer of nanofluid flow in a helically coiled pipe using Taguchi method. J. Therm. Anal. Calorim. 138(2), 1779–1792 (2019)

    Google Scholar 

  28. Shih, T.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J.: A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids 24(3), 227–238 (1995)

    MATH  Google Scholar 

  29. Jayakumar, J.S.; Mahajani, S.M.; Mandal, J.C.; Iyer, K.N.; Vijayan, P.K.: CFD analysis of single-phase flows inside helically coiled tubes. Comput. Chem. Eng. 34(4), 430–446 (2010)

    Google Scholar 

  30. Aly, W.I.A.: Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers. Energy Convers. Manag. 79, 304–316 (2014)

    Google Scholar 

  31. Sekrani, G.; Poncet, S.; Proulx, P.: Modeling of convective turbulent heat transfer of water-based Al2O3 nanofluids in an uniformly heated pipe. Chem. Eng. Sci. 176, 205–219 (2018)

    Google Scholar 

  32. Khanafer, K.; Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54(19–20), 4410–4428 (2011)

    MATH  Google Scholar 

  33. Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52(1), 789–793 (2011)

    Google Scholar 

  34. Wang, X.; Xu, X.; Choi, S.U.S.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13(4), 474–480 (1999)

    Google Scholar 

  35. Xuan, Y.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43(19), 3701–3707 (2000)

    MATH  Google Scholar 

  36. Hamilton, R.L.; Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1(3), 187–191 (1962)

    Google Scholar 

  37. Yu, W.; Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanopart. Res. 5(1), 167–171 (2003)

    Google Scholar 

  38. Timofeeva, E.V.; Gavrilov, A.N.; McCloskey, J.M.; Tolmachev, Y.V.; Sprunt, S.; Lopatina, L.M.; Selinger, J.V.: Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys. Rev. E 76(6), 061203 (2007)

    Google Scholar 

  39. Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571–571 (1952)

    Google Scholar 

  40. Batchelor, G.K.: The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83(1), 97–117 (1977)

    MathSciNet  Google Scholar 

  41. Çengel, Y.A.; Cimbala, J.M.: Fluid Mechanics: Fundamentals and Applications. McGraw-Hill Higher Education, New York (2010)

    Google Scholar 

  42. Gnielinski, V.: New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 16(2), 359–368 (1976)

    Google Scholar 

  43. Petukhov, B.S.; Irvine, T.F.; Hartnett, J.P.: Advances in heat transfer. Academic, New York. 6, 503–564 (1970)

    Google Scholar 

  44. Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S.: Fundamentals of Heat and Mass Transfer. Wiley, New York (2011)

    Google Scholar 

  45. Etghani, M.M.; Baboli, S.A.H.: Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger. Appl. Therm. Eng. 121, 294–301 (2017)

    Google Scholar 

  46. Alimoradi, A.: Investigation of exergy efficiency in shell and helically coiled tube heat exchangers. Cast Stud. Therm. Eng. 10, 1–8 (2017)

    Google Scholar 

  47. Cengel, Y.A.; Boles, M.A.: Thermodynamics: An Engineering Approach, 7th edn. McGraw-Hill Education, New York (2011)

    Google Scholar 

  48. Colebrook, C.F.: Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civ. Eng. 11, 133–156 (1939)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Mohammadi.

Ethics declarations

Conflict of interest

The author declares no competing financial interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M. Numerical Study of Turbulent Nanofluid Flow in Double-Tube Heat Exchanger: The Role of Second Law Analysis. Arab J Sci Eng 48, 12269–12290 (2023). https://doi.org/10.1007/s13369-023-07732-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07732-w

Keywords

Navigation