Skip to main content
Log in

Prediction of Carbonation Depth for Concrete Containing Mineral Admixtures Based on Machine Learning

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study developed a prediction model of the carbonation depth of concrete containing mineral admixtures based on an intelligent algorithm. A carbonation test database of mineral admixture concrete was established considering the influence of 17 parameters. The intelligent algorithm and three existing carbonation depth prediction models were analysed based on the database. The evaluation results indicated that the prediction accuracy of the back-propagation neural network is higher than that of the support vector machine, and the prediction accuracies of the two intelligent algorithms are higher than those of the existing numerical prediction models for carbonation depth. A variable importance analysis indicated that the content of fly ash in mineral admixture has a relatively large influence on the carbonation depth, and the carbonation time is the most critical factor affecting the carbonation depth of concrete containing mineral admixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

W :

Water

W/C :

Water-binder ratio

\({K}_{{\mathrm{CO}}_{2}}\) :

Factor of CO2 concentration

C 0 :

CO2 concentration by volume, %

\({{\varvec{K}}}_{{\varvec{k}}1}\) :

Location factor

\({{\varvec{K}}}_{{\varvec{k}}{\varvec{t}}}\) :

Curing and casting factor

\({{\varvec{K}}}_{{\varvec{k}}{\varvec{s}}}\) :

Stress factor

K F :

Fly ash replacement factor

F :

Fly ash replacement ratio, %

\({{\varvec{f}}}_{\mathbf{c}\mathbf{u}.{\varvec{k}}}\) :

Standard value of cube compressive strength, MPa

w :

Water content, kg/m3

c :

Cement content, kg/m3

\({{\varvec{\gamma}}}_{\mathbf{c}}\) :

Coefficient for cement type

\({\gamma }_{\mathrm{HD}}\) :

Coefficient of the degree of hydration

\({n}_{0}\) :

CO2 concentration by volume, %

\({r}_{1}\) :

Influence coefficient of cement variety

\({r}_{2}\) :

Influence coefficient of fly ash

\({r}_{3}\) :

Influence coefficient of climatic conditions

\(d\left(t\right)\) :

Carbonation depth at service time t

t :

Carbonization time, d

\({K}_{\mathrm{c}}\) :

Cement variety

Ma:

Types of mineral admixtures

\({f}_{\mathrm{cu}}\) :

Cube compressive strength, MPa

Cco2 :

Carbon dioxide concentration

T :

Temperature

R 2 :

Coefficient of determination

R :

Correlation coefficient

BP:

Back-propagation

SVM:

Support vector machine

C:

Cement

FA:

Fly ash

GGBS:

Ground granulated blast furnace slag

SP:

Steel slag powder

SF:

Silica fume

MK:

Metakaolin

Fine:

Fine aggregate

Coarse:

Coarse aggregate

CR:

Cement replacement rate

CA:

Concrete admixture

MSE:

Mean square error

MAPE:

Mean absolute percentage error

IAE:

Integral absolute error

SD:

Standard deviation

RMSD:

Root mean square deviation

SRC:

Standardised regression coefficient

ET:

Exposure time

CD:

Carbonation depth

CT:

Concrete curing time

RH:

Relative humidity

References

  1. Dong, B.; Qiu, Q.; Xiang, J., et al.: Electrochemical impedance measurement and modeling analysis of the carbonation behavior for cementititous materials. Constr. Build. Mater. 54, 558–565 (2014)

    Google Scholar 

  2. Roziere, E.; Loukili, A.; Cussigh, F.: A performance based approach for durability of concrete exposed to carbonation. Constr. Build. Mater. 23(1), 190–199 (2009)

    Google Scholar 

  3. Steffens, A.; Dinkler, D.; Ahrens, H.: Modeling carbonation for corrosion risk prediction of concrete structures. Cem. Concr. Res. 32(6), 935–941 (2002)

    Google Scholar 

  4. Taffese, W.Z.; Sistonen, E.; Puttonen, J.: CaPrM: Carbonation prediction model for reinforced concrete using machine learning methods. Constr. Build. Mater. 100, 70–82 (2015)

    Google Scholar 

  5. Boden, T.; Andres, B.; Marland, G.: Global co2 emissions from fossil-fuel burning. Cem. Manuf. Gas Flaring 1751, 37831–46335 (2006)

    Google Scholar 

  6. Environment, U.N.; Scrivener, K.L.; John, V.M., et al.: Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 114, 2–26 (2018)

    Google Scholar 

  7. Skibsted, J.; Snellings, R.: Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem. Concr. Res. 124, 105799 (2019)

    Google Scholar 

  8. Zhang, X.; Zhou, X.; Zhou, H., et al.: Studies on forecasting of carbonation depth of slag high performance concrete considering gas permeability. Appl. Clay Sci. 79, 36–40 (2013)

    Google Scholar 

  9. Andrade, H.D.; de Carvalho, J.M.F.; Costa, L.C.B., et al.: Mechanical performance and resistance to carbonation of steel slag reinforced concrete. Constr. Build. Mater. 298, 123910 (2021)

    Google Scholar 

  10. Witkowski, H.; Koniorczyk, M.: The influence of pozzolanic additives on the carbonation rate and Life Cycle Inventory of concrete. Constr. Build. Mater. 254, 119301 (2020)

    Google Scholar 

  11. Hussain, S.; Bhunia, D.; Singh, S.B.: Comparative study of accelerated carbonation of plain cement and fly-ash concrete. J. Build. Eng. 10, 26–31 (2017)

    Google Scholar 

  12. Chang, H.; Wang, Y.; Wang, X., et al.: Effects of carbonation on phase composition of Metakaolin-blended cement pastes. Constr. Build. Mater. 324, 126639 (2022)

    Google Scholar 

  13. Younsi, A.; Turcry, P.; Aït-Mokhtar, A.: Quantification of CO2 uptake of concretes with mineral additions after 10-year natural carbonation. J. Clean. Prod. 349, 131362 (2022)

    Google Scholar 

  14. Sharma, R.; Khan, R.A.: Influence of copper slag and metakaolin on the durability of self compacting concrete. J. Clean. Prod. 171, 1171–1186 (2018)

    Google Scholar 

  15. Cheng, S.; Shui, Z.; Sun, T., et al.: Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete. Appl. Clay Sci. 141, 111–117 (2017)

    Google Scholar 

  16. Rathnarajan, S.; Dhanya, B.S.; Pillai, R.G., et al.: Carbonation model for concretes with fly ash, slag, and limestone calcined clay-using accelerated and five-year natural exposure data. Cement Concr. Compos. 126, 104329 (2022)

    Google Scholar 

  17. Qin, L.; Gao, X.; Chen, T.: Influence of mineral admixtures on carbonation curing of cement paste. Constr. Build. Mater. 212, 653–662 (2019)

    Google Scholar 

  18. Shah, V.; Bishnoi, S.: Carbonation resistance of cements containing supplementary cementitious materials and its relation to various parameters of concrete. Constr. Build. Mater. 178, 219–232 (2018)

    Google Scholar 

  19. Tuuti, K.: Corrosion of Steel in Concrete, Report. Swedish Cement and Concrete Research Institute, Stockholm (1982)

  20. Papadakis, V.G.; Vayenas, C.G.; Fardis, M.N.: Fundamental modeling and experimental investigation of concrete carbonation. Mater. J. 88(4), 363–373 (1991)

    Google Scholar 

  21. Liu, K.; Alam, M.S.; Zhu, J., et al.: Prediction of carbonation depth for recycled aggregate concrete using ANN hybridized with swarm intelligence algorithms. Constr. Build. Mater. 301, 124382 (2021)

    Google Scholar 

  22. Gehlot, T.; Dave, M.; Solanki, D.: Neural network model to predict compressive strength of steel fiber reinforced concrete elements incorporating supplementary cementitious materials. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.04.327

    Article  Google Scholar 

  23. Moradi, M.J.; Khaleghi, M.; Salimi, J., et al.: Predicting the compressive strength of concrete containing metakaolin with different properties using ANN. Measurement 183, 109790 (2021)

    Google Scholar 

  24. Penido, R.E.K.; da Paixão, R.C.F.; Costa, L.C.B., et al.: Predicting the compressive strength of steelmaking slag concrete with machine learning—considerations on developing a mix design tool. Constr. Build. Mater. 341, 127896 (2022)

    Google Scholar 

  25. Atici, U.: Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst. Appl. 38(8), 9609–9618 (2011)

    Google Scholar 

  26. Chithra, S.; Kumar, S.R.R.S.; Chinnaraju, K., et al.: A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Constr. Build. Mater. 114, 528–535 (2016)

    Google Scholar 

  27. Felix, E.F.; Carrazedo, R.; Possan, E.: Carbonation model for fly ash concrete based on artificial neural network: Development and parametric analysis. Constr. Build. Mater. 266, 121050 (2021)

    Google Scholar 

  28. Cardoso, C.A.V.; Cruz, G.L.: Forecasting natural gas consumption using ARIMA models and artificial neural networks. IEEE Lat. Am. Trans. 14(5), 2233–2238 (2016)

    Google Scholar 

  29. Neto, A.B.; Bonini, C.S.B.; Bisi, B.S., et al.: Artificial neural network for classification and analysis of degraded soils. IEEE Lat. Am. Trans. 15(3), 503–509 (2017)

    Google Scholar 

  30. Luo, D., Niu, D., Dong, Z.: Application of neural network for concrete carbonation depth prediction (2014)

  31. Kellouche, Y.; Boukhatem, B.; Ghrici, M., et al.: Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network. Neural Comput. Appl. 31(2), 969–988 (2019)

    Google Scholar 

  32. Zhang, Y.; Niu, D.G.; Li, S.B.: Experimental study on fly ash concrete carbonation. Sci. Technol. Eng. 17(27), 275–278 (2017)

    Google Scholar 

  33. He, X.Y.; Han, K.; Du, L., et al.: Study on effect of mineral admixture on carbonation resistance of C30 concret. Sci. Technol. Vis. 11, 98–99 (2018)

    Google Scholar 

  34. Li, J.Z.; Zhu, L.: Study on carbonation resistance of fly ash high performance concrete. China Concr. Cem. Prod. 10, 28–30 (2018)

    Google Scholar 

  35. Yao, Z.Y.; Meng, Z.L.; Zhang, F.S.; et al.: Effect of admixture content on carbonation property of concret. Exp. Res. 121, 64–68 (2019)

    Google Scholar 

  36. Chen, K.: Experimental study on the carbonization characteristics of concrete with fly ash content. Jiangxi Build. Mater. 1, 22–23 (2020)

    Google Scholar 

  37. Huang, C.Y.; Huang, L.P.; Huang, J.F.; et al.: Experimental study on compressive strength and carbonation profiles of recycled concrete with high mineral admixture content. Fujian Constr. Technol. 2, 31–34 (2020)

    Google Scholar 

  38. Fan, Y.H.; He, Z.; Cai, X.H., et al.: Study on mechanical properties and carbonization resistance of concrete with different fly ash content and curing conditions. Guangdong Build. Mater. 37(7), 4–6+3 (2021)

    Google Scholar 

  39. Wang, Y.L.; Wang, S.Y.; Liu, Q.L.: Influences of active admixtures on anti-carbonization performance of concrete. Bull. Chin. Ceram. Soc. 40(2), 439–446 (2021)

    Google Scholar 

  40. Khunthongkeaw, J.; Tangtermsirikul, S.; Leelawat, T.: A study on carbonation depth prediction for fly ash concrete. Constr. Build. Mater. 20(9), 744–753 (2006)

    Google Scholar 

  41. Khalil, E.A.B.; Anwar, M.: Carbonation of ternary cementitious concrete systems containing fly ash and silica fume. Water Sci. 29(1), 36–44 (2015)

    Google Scholar 

  42. Singh, N.; Singh, S.P.: Carbonation and electrical resistance of self compacting concrete made with recycled concrete aggregates and metakaolin. Constr. Build. Mater. 121, 400–409 (2016)

    Google Scholar 

  43. Zhou, W.L.; Fang, K.L.; Zhan, B.: Study on the carbonation resistance of concrete mixed with fly ash and mineral powder. Concr. Cem. Prod. 12, 14–19 (2012)

    Google Scholar 

  44. Wang, X.; Wang, Y.; Liushuan, Y., et al.: Research on the anti-carbonation performance of high-volume fly ash concrete. Concrete 2013(2), 5–7 (2013)

    Google Scholar 

  45. Liu, Y.H.; Li, C.: Study on the anti-carbonation performance of high-volume fly ash concrete. Henan Build. Mater. 6, 26–27 (2013)

    Google Scholar 

  46. Tian, L.M.; Zhang, J.H.; Li, B.: Experimental study on carbonization and steel corrosion of concrete with large volume of fly ash. J. Langfang Normal Univ. Nat. Sci. Ed. 14(4), 98–99 (2014)

    Google Scholar 

  47. Min, J.; Han, J.Y.; Song, X.Y.: Carbonization properties of slag and fly ash concrete. Compr. Util. Fly Ash 5, 19–21 (2014)

    Google Scholar 

  48. Yin, H.: Research on the Carbonization Performance of Concrete with Large Amount of Mineral admixture. Yanshan University (2016)

  49. Zhang, Y.C.; Lu, L.C.; Yao, Y.G., et al.: Research on the carbonation effect of fly ash concrete. Constr. Technol. 45(S2), 526–529 (2016)

    Google Scholar 

  50. Chen, J.; Wen, X.D.; He, Y.L., et al.: Early carbonation characteristics and prediction of high-volume mineral admixture concrete. Highway 64(12), 230–235 (2019)

    Google Scholar 

  51. Dong, W.; Su, Y.; Lin, Y.J., et al.: Effect of fly ash on carbonation resistance of recycled concrete. J. Yangtze River Acad. Sci. 36(9), 142 (2019)

    Google Scholar 

  52. Atiş, C.D.: Accelerated carbonation and testing of concrete made with fly ash. Constr. Build. Mater. 17(3), 147–152 (2003)

    Google Scholar 

  53. Gao, Y.; Cheng, L.; Gao, Z., et al.: Effects of different mineral admixtures on carbonation resistance of lightweight aggregate concrete. Constr. Build. Mater. 43, 506–510 (2013)

    Google Scholar 

  54. Feng, Z.J.; Ye, X.L.: Research on the influence of mineral admixtures on carbonization of concrete. Sci. J. Intell. Syst. Res. 2020, 20–28 (2020)

    Google Scholar 

  55. Shi, H.; Xu, B.; Zhou, X.: Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Constr. Build. Mater. 23(5), 1980–1985 (2009)

    Google Scholar 

  56. Zhao, Q.; He, X.; Zhang, J., et al.: Long-age wet curing effect on performance of carbonation resistance of fly ash concrete. Constr. Build. Mater. 127, 577–587 (2016)

    Google Scholar 

  57. Sisomphon, K.; Franke, L.: Carbonation rates of concretes containing high volume of pozzolanic materials. Cem. Concr. Res. 37(12), 1647–1653 (2007)

    Google Scholar 

  58. Kurda, R.; de Brito, J.; Silvestre, J.D.: Carbonation of concrete made with high amount of fly ash and recycled concrete aggregates for utilization of CO2. J. CO2 Util. 29, 12–19 (2019)

    Google Scholar 

  59. Papadakis, V.G.: Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem. Concr. Res. 30(2), 291–299 (2000)

    Google Scholar 

  60. Yang, Y.; Ning, C.P.: Experimental study and theoretical analysis of carbonation performance of activated admixture recycled concrete. Concrete 5, 94–98 (2017)

    Google Scholar 

  61. China Association for Engineering Construction Standardization (CECS): Standard for Durability Assessment of Concrete Structures (2007)

  62. Zhang, Y.; Jiang, L.X.: A practical mathematical model of concrete carbonation depth based on the mechanism. Ind. Constr. 28(1), 16–19 (1998)

    MathSciNet  Google Scholar 

  63. Xiao, J.; Gou, C.F.: A review of concrete carbonation research. Concrete 1, 40–44 (2010)

    Google Scholar 

  64. Adhikary, B.B.; Mutsuyoshi, H.: Prediction of shear strength of steel fiber RC beams using neural networks. Constr. Build. Mater. 20(9), 801–811 (2006)

    Google Scholar 

  65. Zhou, Z.: A review of the development status of BP neural network. Shanxi Electron. Technol. 2, 90–92 (2008)

    Google Scholar 

  66. Aljarah, I.; Faris, H.; Mirjalili, S.: Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput. 22(1), 1–15 (2018)

    Google Scholar 

  67. Kwon, S.J.; Song, H.W.: Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling. Cem. Concr. Res. 40(1), 119–127 (2010)

    Google Scholar 

  68. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (1999)

    MATH  Google Scholar 

  69. Simon, H.: The Principle of Neural Network. Ye Shiwei and Shi Zhongzhi (translated). Machinery Industry Press, Beijing (2004)

  70. Zhang, H.R.; Han, Z.Z.; Li, C.G.: Support vector machines. Comput. Sci. 12, 135–137 (2002)

    Google Scholar 

  71. Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106(D7), 7183–7192 (2001)

    Google Scholar 

  72. Liu, R.X.; Kuang, J.; Gong, Q., et al.: Principal component regression analysis with SPSS. Comput. Methods Progr. Biomed. 71(2), 141–147 (2003)

    Google Scholar 

  73. Wei, P.; Lu, Z.; Song, J.: Variable importance analysis: a comprehensive review. Reliab. Eng. Syst. Saf. 142, 399–432 (2015)

    Google Scholar 

  74. Parrott, L.J.: A Review of Carbonation in Reinforced Concrete (1987)

  75. Duval, R.: La durabilité des armatures et du béton d’enrobage, p. 173–225. Pressesde l’École Nationale des Ponts et Chaussées, Paris (1992)

    Google Scholar 

  76. Peng, Z.; Shi, C.; Shi, Z., et al.: Alkali-aggregate reaction in recycled aggregate concrete. J. Clean. Prod. 255, 120238 (2020)

    Google Scholar 

  77. Felix, E.F.; Carrazedo, R.; Possan, E.: Parametric analysis of carbonation process in reinforced concrete structures through Artificial Neural Networks. Revista ALCONPAT 7(3), 302–316 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Project No. 52108132), the Natural Science Foundation of Hebei Province (Project No. E2021202067), the Colleges and Universities in Hebei Province Science and Technology Research (Project No. QN2021037).

Author information

Authors and Affiliations

Authors

Contributions

P.C. and S.C. designed the whole test scheme; Y.W., H.W., Y.L., Z.W. and W.Z. performed the experiments. P.C. made comments and amendments on the paper.

Corresponding author

Correspondence to Pang Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Chen, P., Cao, S. et al. Prediction of Carbonation Depth for Concrete Containing Mineral Admixtures Based on Machine Learning. Arab J Sci Eng 48, 13211–13225 (2023). https://doi.org/10.1007/s13369-023-07645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07645-8

Keywords

Navigation