Skip to main content

Advertisement

Log in

Estimating the Power Saving of KCOOH Liquid Desiccant Dehumidification System Using a Statistical Method

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In hot and moist weather, a hybrid liquid desiccant dehumidification conditioning (LDAC) system is proposed as a viable substitute to stand-alone conventional vapour compression refrigeration (VCR) system because of their dominance in extracting the latent heat load from the air, being environmentally friendly, removing pollutants from the processed air, and consuming less electrical energy. The current research article experimentally investigates the dehumidification performance of a potassium formate (KCOOH) solution on an innovatively designed and developed 5-kW hybrid LDAC system. The main aim of this research paper is to optimize the performance parameters of a hybrid LDAC system employing a full factorial DOE design. The three input variables are selected to evaluate their effects on the three output performance responses. The regression correlation is obtained to anticipate the performance of the KCOOH solution for the output responses. The experimental result reveals that their improvement of 26.97% in \({\mathrm{COP}}_{{{\mathrm{Hybrid}}}}\) as compared to a stand-alone VCR unit and that the influence of inlet desiccant concentration is more prominent than the inlet mass flow rate and inlet desiccant temperature on the output responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AC:

Air conditioner

ANOVA:

Analysis of variance

C:

Desiccant concentration (\({\mathrm{kg}}_{{{\mathrm{desiccant}}}} /{\mathrm{kg}}_{{{\mathrm{solution}}}}\))

COP:

Coefficient of performance

\({\mathrm{COP}}_{{{\mathrm{Hybrid}}}}\) :

Coefficient of performance of a hybrid system

DOE:

Design of experiments

HE-1:

Heat exchanger 1

HE-2:

Heat exchanger 2

IAQ:

Indoor air quality

LDAC:

Liquid desiccant air-conditioning

LHL:

Latent heat load

KCOOH:

Potassium formate

TR:

Ton of refrigeration

VCR:

Vapour compression refrigeration

\(a_{1} {-} a_{7}\) :

Air states points

d 1d 4 :

Desiccant solution state points

DA:

Dry air

\(\dot{m}_{a11}\) :

Inlet mass flow rate at level 1

\(\dot{m}_{a12}\) :

Inlet mass flow rate at level 2

\(\dot{m}_{a13}\) :

Inlet mass flow rate at level 3

sys:

System

T :

Temperature (K)

\(T_{d11}\) :

Inlet desiccant temperature at level 1

\(T_{d12}\) :

Inlet desiccant temperature at level 2

\(T_{d13}\) :

Inlet desiccant temperature at level 3

\(C_{11}\) :

Inlet desiccant concentration at level 1

\(C_{12}\) :

Inlet desiccant concentration at level 2

\(C_{13}\) :

Inlet desiccant concentration at level 3

\(\Delta w\) :

Specific humidity change

\(w\) :

Specific humidity

\(\emptyset\) :

Relative humidity

References

  1. Che, W.W., et al.: Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system. Energy Build. 201, 202–215 (2019). https://doi.org/10.1016/J.ENBUILD.2019.06.029

    Article  Google Scholar 

  2. Anand, P.; Sekhar, C.; Cheong, D.; Santamouris, M.; Kondepudi, S.: Occupancy-based zone-level VAV system control implications on thermal comfort, ventilation, indoor air quality and building energy efficiency. Energy Build. 204, 109473 (2019). https://doi.org/10.1016/J.ENBUILD.2019.109473

    Article  Google Scholar 

  3. Naik, B.K.; Muthukumar, P.: Experimental investigation and parametric studies on structured packing chamber based liquid desiccant dehumidification and regeneration systems. Build. Environ. 149, 330–348 (2019). https://doi.org/10.1016/J.BUILDENV.2018.12.028

    Article  Google Scholar 

  4. Prasartkaew, B.; Kumar, S.: A low carbon cooling system using renewable energy resources and technologies. Energy Build. 42(9), 1453–1462 (2010). https://doi.org/10.1016/J.ENBUILD.2010.03.015

    Article  Google Scholar 

  5. Zhang, Y.; Zhou, G.; Lin, K.; Zhang, Q.; Di, H.: Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook. Build. Environ. 42(6), 2197–2209 (2007). https://doi.org/10.1016/J.BUILDENV.2006.07.023

    Article  Google Scholar 

  6. Dai, Y.J.; Wang, R.Z.; Zhang, H.F.; Yu, J.D.: Use of liquid desiccant cooling to improve the performance of vapor compression air conditioning. Appl. Therm. Eng. 21(12), 1185–1202 (2001). https://doi.org/10.1016/S1359-4311(01)00002-3

    Article  Google Scholar 

  7. Mohan, B.S.; Tiwari, S.; Maiya, M.P.: Experimental investigations on performance of liquid desiccant-vapor compression hybrid air conditioner. Appl. Therm. Eng. 77, 153–162 (2015). https://doi.org/10.1016/J.APPLTHERMALENG.2014.12.004

    Article  Google Scholar 

  8. Khalil, A.: An experimental study on multi-purpose desiccant integrated vapor-compression air-conditioning system. Int. J. Energy Res. 36(4), 535–544 (2012). https://doi.org/10.1002/er.1767

    Article  Google Scholar 

  9. Mohammad, A.T.; Bin Mat, S.; Sulaiman, M.Y.; Sopian, K.; Al-Abidi, A.A.: Survey of hybrid liquid desiccant air conditioning systems. Renew. Sustain. Energy Rev. 20, 186–200 (2013). https://doi.org/10.1016/J.RSER.2012.11.065

    Article  Google Scholar 

  10. Misha, S.; Mat, S.; Ruslan, M.H.; Sopian, K.: Review of solid/liquid desiccant in the drying applications and its regeneration methods. Renew. Sustain. Energy Rev. 16(7), 4686–4707 (2012). https://doi.org/10.1016/J.RSER.2012.04.041

    Article  Google Scholar 

  11. Abdel-Salam, A.H.; Simonson, C.J.: State-of-the-art in liquid desiccant air conditioning equipment and systems. Renew. Sustain. Energy Rev. 58, 1152–1183 (2016). https://doi.org/10.1016/J.RSER.2015.12.042

    Article  Google Scholar 

  12. La, D.; Dai, Y.J.; Li, Y.; Wang, R.Z.; Ge, T.S.: Technical development of rotary desiccant dehumidification and air conditioning: a review. Renew. Sustain. Energy Rev. 14(1), 130–147 (2010). https://doi.org/10.1016/j.rser.2009.07.016

    Article  Google Scholar 

  13. Longo, G.A.; Gasparella, A.: Experimental and theoretical analysis of heat and mass transfer in a packed column dehumidifier/regenerator with liquid desiccant. Int. J. Heat Mass Transf. 48(25–26), 5240–5254 (2005). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2005.07.011

    Article  Google Scholar 

  14. Lof GOG, B.T.; Cler, G.: Performance of a solar desiccant cooling system. In: Proceedings ASME-JSME-JSES Solar Energy Conference Honolulu, Hawaii, USA, pp. 828–834 (1986)

  15. Elsarrag, E.: Performance study on a structured packed liquid desiccant regenerator. Sol. Energy 80(12), 1624–1631 (2006). https://doi.org/10.1016/J.SOLENER.2005.11.005

    Article  Google Scholar 

  16. Liu, X.H.; Yi, X.Q.; Jiang, Y.: Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions. Energy Convers. Manag. 52(1), 180–190 (2011). https://doi.org/10.1016/J.ENCONMAN.2010.06.057

    Article  Google Scholar 

  17. Wen, T.; Luo, Y.; Sheng, L.: Experimental study on the corrosion behavior and regeneration performance of KCOOH aqueous solution. Sol. Energy 201(2018 May), 638–648 (2020). https://doi.org/10.1016/j.solener.2020.03.044

    Article  Google Scholar 

  18. Cheng, X.; Yin, Y.; Guo, Y.; Zhou, W.: Experimental study on a novel air conditioning system for deep cascade utilization of waste heat. Appl. Therm. Eng. 200, 117695 (2022). https://doi.org/10.1016/J.APPLTHERMALENG.2021.117695

    Article  Google Scholar 

  19. Wen, T.; Luo, Y.; Wang, M.; She, X.: Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate. Renew. Energy 167, 841–852 (2021). https://doi.org/10.1016/J.RENENE.2020.11.157

    Article  Google Scholar 

  20. Shi, Y.; Chen, G.: Experimental study of falling film absorption with potassium formate—water as working pair. Int. J. Therm. Sci. 176, 107520 (2022). https://doi.org/10.1016/J.IJTHERMALSCI.2022.107520

    Article  Google Scholar 

  21. Zhang, N., et al.: Numerical investigations and performance comparisons of a novel cross-flow hollow fiber integrated liquid desiccant dehumidification system. Energy 182, 1115–1131 (2019). https://doi.org/10.1016/J.ENERGY.2019.06.036

    Article  Google Scholar 

  22. Longo, G.A.; Gasparella, A.: Experimental measurement of thermophysical properties of H2O/KCOOH (potassium formate) desiccant. Int. J. Refrig. 62, 106–113 (2016). https://doi.org/10.1016/J.IJREFRIG.2015.10.004

    Article  Google Scholar 

  23. Wang, Z.; Zhang, X.; Li, Z.: Investigation on the coupled heat and mass transfer process between extremely high humidity air and liquid desiccant in the counter-flow adiabatic packed tower. Int. J. Heat Mass Transf. 110, 898–907 (2017). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.03.072

    Article  Google Scholar 

  24. Chen, X., et al.: Experimental investigation of a polymer hollow fibre integrated liquid desiccant dehumidification system with aqueous potassium formate solution. Appl. Therm. Eng. 142, 632–643 (2018). https://doi.org/10.1016/J.APPLTHERMALENG.2018.07.003

    Article  Google Scholar 

  25. Wen, T.; Luo, Y.; Sheng, L.: Experimental study on the corrosion behavior and regeneration performance of KCOOH aqueous solution. Sol. Energy 201, 638–648 (2020). https://doi.org/10.1016/J.SOLENER.2020.03.044

    Article  Google Scholar 

  26. Anderson, V.L.; McLean, R.A.: Design of Experiments: A Realistic Approach (2018). https://doi.org/10.1201/9781315141039

  27. Mohr, D.L.; Wilson, W.J.; Freund, R.J.: Design of experiments. In: Mohr, D.L.; Wilson, W.J.; Freund, R.J. (Eds.) Statistical Methods, pp. 493–546. Academic Press, Cambridge (2022). https://doi.org/10.1016/B978-0-12-823043-5.00010-2

    Chapter  MATH  Google Scholar 

  28. Kumar, R.; Dhar, P.L.; Jain, S.: Development of new wire mesh packings for improving the performance of zero carryover spray tower. Energy 36(2), 1362–1374 (2011). https://doi.org/10.1016/j.energy.2010.09.040

    Article  Google Scholar 

  29. Longo, G.A.; Gasparella, A.: Three years experimental comparative analysis of a desiccant based air conditioning system for a flower greenhouse: assessment of different desiccants. Appl. Therm. Eng. 78, 584–590 (2015). https://doi.org/10.1016/J.APPLTHERMALENG.2014.12.005

    Article  Google Scholar 

  30. Bassuoni, M.M.: Experimental performance study of a proposed desiccant based air conditioning system. J. Adv. Res. 5(1), 87–95 (2014). https://doi.org/10.1016/J.JARE.2012.12.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashish Kumar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Singh, A. Estimating the Power Saving of KCOOH Liquid Desiccant Dehumidification System Using a Statistical Method. Arab J Sci Eng 48, 11441–11456 (2023). https://doi.org/10.1007/s13369-022-07482-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07482-1

Keywords

Navigation