Skip to main content

Advertisement

Log in

Design Optimization of a Fluidic Diode for a Wave Energy Converter via Artificial Intelligence-Based Technique

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A pair of turbines can harness power from a wave energy Converter. Their performance is poor than individual turbines due to flow reversal. A fluidic diode (FD) which offers variable resistance to the flow, can be used to prevent flow reversal and improve the performance of these units. Its performance is given by diodicity (ratio of reverse to forward flow pressure drop). A higher diodicity enables it to prevent flow reversal better and improve the turbine unit’s overall efficiency. In this work, the geometrical shape of the FD is optimized to obtain higher diodicity. Six geometrical variables of the FD are varied to obtain sample points using the sampling technique, which is numerically investigated by solving steady-state Reynolds averaged Navier–Stokes (RANS) equations. These numerical results were fed into a neural network code that produced an optimal FD design. The optimum model showed a 36.5% improvement in diodicity at 0.35 m3/s. The fluid flowing through the optimized model experience higher resistance in the reverse direction because of the increased vortex strength than the base model. Among all the design variable considered, nozzle angle is a highly sensitive parameter in the optimization process. The optimum FD model enhanced the overall efficiency of the turbine unit by 13.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

RANS:

Reynolds averaged Navier–Stokes

BFD:

Base fluidic model

OWC:

Oscillating water column

CSB:

Crested shape body

OFD:

Optimized fluidic model

CFD:

Computational fluid dynamics

SC:

Spread constant

DOE:

Design of experiment

TKE:

Turbulent kinetic energy

EG:

Error goal

TU:

Unidirectional turbine

FD:

Fluidic diode

WEC:

Wave energy converter

GCI:

Grid convergence index

RBNN:

Radial basis neural network

\({C}_{A}\) :

Input flow coefficient

\(u\) :

Angular velocity (m/s)

\({C}_{T}\) :

Torque coefficient

\(v\) :

Axial flow velocity (m/s)

D :

Diameter of the duct (m)

\(\varphi\) :

Flow co-efficient

\(f\) :

Friction factor

\(v\prime\) :

Fluctuation of velocity in the y-direction

L N :

Normalized length of the nozzle

\(w^{\prime}\) :

Fluctuation of velocity in the z-direction

Q :

Flow rate (m3/s)

ω :

Angular speed (rad/s)

R :

Normalized radius

\(\psi\) :

Diodicity

\({R}_{r}\) :

Mean radius of the turbine (m)

\(\eta\) :

Efficiency

\(T\) :

Time (s)

\(\gamma\) :

Nozzle angle (degree)

\(TR\) :

Torque (N-m)

\(\Delta p\) :

Pressure drop (Pa)

TU :

Turbine

\({\Delta p}_{T}\) :

Pressure drop across turbine (Pa)

\(U\) :

Velocity of fluid inside the duct (m/s)

ε :

Turbulent energy dissipation (m2/s3)

\(u\prime\) :

Fluctuation of velocity in the x-direction

\(k\) :

Turbulent kinetic energy (m2/s2)

B :

Bluff body

\(fr\) :

Forward

\(re\) :

Reverse

To :

Toroidal

References

  1. Ali, H.M.: Phase change materials based thermal energy storage for solar energy systems. J. Build. Eng. 56, 104731 (2022). https://doi.org/10.1016/j.jobe.2022.104731

    Article  Google Scholar 

  2. Parsa, S.M.; Yazdani, A.; Dhahad, H.; Alawee, W.H.; Hesabi, S.; Norozpour, F., et al.: Effect of Ag, Au, TiO2 metallic/metal oxide nanoparticles in double-slope solar stills via thermodynamic and environmental analysis. J. Clean. Prod. 311, 127689 (2021). https://doi.org/10.1016/j.jclepro.2021.127689

    Article  Google Scholar 

  3. Falcão, A.F.O.; Henriques, J.C.C.: Oscillating-water-column wave energy converters and air turbines: a review. Renew Energy 85, 1391–1424 (2016). https://doi.org/10.1016/j.renene.2015.07.086

    Article  Google Scholar 

  4. Das, T.K.; Halder, P.; Samad, A.: Optimal design of air turbines for oscillating water column wave energy systems: a review. Int. J. Ocean Clim Syst 8, 37–49 (2017). https://doi.org/10.1177/1759313117693639

    Article  Google Scholar 

  5. Jayashankar, V.; Anand, S.; Geetha, T.; Santhakumar, S.; Jagadeesh Kumar, V.; Ravindran, M., et al.: A twin unidirectional impulse turbine topology for owc based wave energy plants. Renew Energy 34, 692–698 (2009). https://doi.org/10.1016/j.renene.2008.05.028

    Article  Google Scholar 

  6. Mala, K.; Jayaraj, J.; Jayashankar, V.; Muruganandam, T.M.; Santhakumar, S.; Ravindran, M., et al.: A twin unidirectional impulse turbine topology for owc based wave energy plants - experimental validation and scaling. Renew Energy 36, 307–314 (2011). https://doi.org/10.1016/j.renene.2010.06.043

    Article  Google Scholar 

  7. Takao, M.; Takami, A.; Okuhara, S.; Setoguchi, T.: A twin unidirectional impulse turbine for wave energy conversion. J. Therm. Sci. 20, 394–397 (2011). https://doi.org/10.1007/s11630-011-0486-1

    Article  Google Scholar 

  8. Okuhara, S.; Takao, M.; Takami, A.; Setoguchi, T.: A twin unidirectional impulse turbine for wave energy conversion—effect of guide vane solidity on the performance. Open J. Fluid Dyn. 2, 343–347 (2012). https://doi.org/10.4236/ojfd.2012.24A043

    Article  Google Scholar 

  9. Pereiras, B.; Valdez, P.; Castro, F.: Numerical analysis of a unidirectional axial turbine for twin turbine configuration. Appl. Ocean. Res. 47, 1–8 (2014). https://doi.org/10.1016/j.apor.2014.03.003

    Article  Google Scholar 

  10. Thomas, S.K.; Muruganandam, T.M.: A review of acoustic compressors and pumps from fluidics perspective. Sens. Actuat., A Phys. 283, 42–53 (2018). https://doi.org/10.1016/j.sna.2018.09.031

    Article  Google Scholar 

  11. Li, L.; Cheng, Z.; Lange, C.F.: CFD-based optimization of fluid flow product aided by artificial intelligence and design space validation. Math. Probl. Eng. (2018). https://doi.org/10.1155/2018/8465020

    Article  Google Scholar 

  12. Elsayed, K.; Lacor, C.: Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches. Powder Technol. 212, 115–133 (2011). https://doi.org/10.1016/j.powtec.2011.05.002

    Article  Google Scholar 

  13. Kim, J.H.; Kim, K.Y.: Analysis and optimization of a vaned diffuser in a mixed flow pump to improve hydrodynamic performance. J. Fluids Eng. 134, 71–104 (2012). https://doi.org/10.1115/1.4006820

    Article  Google Scholar 

  14. Lin, S.; Zhao, L.; Guest, J.K.; Weihs, T.P.; Liu, Z.: Topology optimization of fixed-geometry fluid diodes. J. Mech. Des. 137, 1–8 (2015). https://doi.org/10.1115/1.4030297

    Article  Google Scholar 

  15. Lim, D.K.; Song, M.S.; Chae, H.; Kim, E.S.: Topology optimization on vortex-type passive fluidic diode for advanced nuclear reactors. Nucl Eng Technol 51, 1279–1288 (2019). https://doi.org/10.1016/j.net.2019.03.018

    Article  Google Scholar 

  16. Shin, S.; Jeong, J.H.; Lim, D.K.; Kim, E.S.: Design of SFR fluidic diode axial port using topology optimization. Nucl Eng Des 338, 63–73 (2018). https://doi.org/10.1016/j.nucengdes.2018.07.028

    Article  Google Scholar 

  17. Dudhgaonkar, P.V.; Jayashankar, V.; Jalihal, P.; Kedarnath, S.; Setoguchi, T.; Takao, M., et al.: Fluidic components for oscillating water column based wave energy plants. Fluids Eng. Conf. 1, 24–29 (2011). https://doi.org/10.1115/AJK2011-07035

    Article  Google Scholar 

  18. Okuhara, S.; Ashraful Alam, M.M.; Takao, M.; Kinoue, Y.: Performance of fluidic diode for a twin unidirectional impulse turbine. Earth Environ. Sci. 240, 16–21 (2019). https://doi.org/10.1088/1755-1315/240/5/052011

    Article  Google Scholar 

  19. Okuhara, S.; Sato, H.; Takao, M.; Setoguchi, T.: Wave energy conversion : effect of fluidic diode geometry on the performance. Open J Fluid Dyn 4, 433–439 (2014). https://doi.org/10.1299/jsmefed.2015._0514-1_

    Article  Google Scholar 

  20. Thompson, S.M.; Paudel, B.J.; Walters, D.K.; Jamal, T.: A numerical investigation of multi-staged tesla valves. Fluids Eng. Div. 25, 1–7 (2017)

    Google Scholar 

  21. Forster, F.K.; Williams, B.E.: Parametric design of fixed geometry microvalves the Tesser valve. ASME Int. Mech. Eng. Congr. Expo. 17(22), 431–447 (2002)

    Google Scholar 

  22. Kulkarni, A.A.; Ranade, V.V.; Rajeev, R.; Koganti, S.B.: Pressure drop across vortex diodes: experiments and design guidelines. Chem. Eng. Sci. 64, 1285–1292 (2009). https://doi.org/10.1016/j.ces.2008.10.060

    Article  Google Scholar 

  23. Kwok CCK.: Vortex vent diode. US3461897 (1969).

  24. Hampton K, Fletcher DE, Graichen BM, Gilmer MC, James MH, Niedert AD: Fluidic diode check valve. US9915362B2 (2018).

  25. Torvald Linderoth E.: Aerodynamic check valve. US2727535 (1995).

  26. Belhocine, A.; Wan Omar, W.Z.: Computational fluid dynamics (CFD) analysis and numerical aerodynamic investigations of automotive disc brake rotor. Aust J Mech Eng 16, 188–205 (2018). https://doi.org/10.1080/14484846.2017.1325118

    Article  Google Scholar 

  27. Belhocine, A.; Stojanovic, N.; Abdullah, O.I.: Numerical simulation of laminar boundary layer flow over a horizontal flat plate in external incompressible viscous fluid. Eur. J. Comput. Mech. 30, 337–386 (2021). https://doi.org/10.13052/EJCM2642-2085.30463

    Article  MathSciNet  Google Scholar 

  28. Belhocine, A.: Numerical study of heat transfer in fully developed laminar flow inside a circular tube. Int. J. Adv. Manuf. Technol. 85, 2681–2692 (2016). https://doi.org/10.1007/s00170-015-8104-0

    Article  Google Scholar 

  29. Belhocine, A.; Abdullah, O.I.: Numerical simulation of thermally developing turbulent flow through a cylindrical tube. Int J Adv Manuf Technol 102, 2001–2012 (2019). https://doi.org/10.1007/s00170-019-03315-y

    Article  Google Scholar 

  30. ANSYS: Inc. ANSYS Fluent theory guide release 15.0. 15317. (2013).

  31. Shish, T.H.; Liou, W.W.; Shabbir, A.; Zhigang, Y.; Jiang, Z.: A new k-e eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids 24, 227–238 (1995). https://doi.org/10.1007/978-3-319-27386-0_7

    Article  MATH  Google Scholar 

  32. Orr, M.J.L.: Introduction to radial basis function networks, p. 1–67. University Edinburgh, Edinburgh (1996)

    Google Scholar 

  33. Halder, P.; Samad, A.; Thévenin, D.: Improved design of a Wells turbine for higher operating range. Renew Energy 106, 122–134 (2017). https://doi.org/10.1016/j.renene.2017.01.012

    Article  Google Scholar 

  34. Badhurshah, R.; Samad, A.: Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion. Renew Energy 74, 749–760 (2015). https://doi.org/10.1016/j.renene.2014.09.001

    Article  Google Scholar 

  35. Badhurshah, R.; Dudhgaonkar, P.; Jalihal, P.; Samad, A.: High efficiency design of an impulse turbine used in oscillating water column to harvest wave energy. Renew Energy 121, 344–354 (2018). https://doi.org/10.1016/j.renene.2018.01.028

    Article  Google Scholar 

  36. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. Trans. ASME 130, 0780011–0780014 (2008). https://doi.org/10.1115/1.2960953

    Article  Google Scholar 

  37. Manna, P.; Dharavath, M.; Sinha, P.K.; Chakraborty, D.: Optimization of a flight-worthy scramjet combustor through CFD. Aerosp. Sci. Technol. 27, 138–146 (2013). https://doi.org/10.1016/j.ast.2012.07.005

    Article  Google Scholar 

  38. white, M.F.: Fluid mechanics, 7th edn., p. 5–18. McGraw-Hill, New York (2011)

    Google Scholar 

Download references

Acknowledgements

The high-performance computing facility at IIT Madras is acknowledged for its computational support. Mr. Keito Matsumoto of the National Institute of Technology, Matsue College, Japan, is acknowledged for his valuable analytical assessment suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdus Samad.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hithaish, D., Das, T.K., Takao, M. et al. Design Optimization of a Fluidic Diode for a Wave Energy Converter via Artificial Intelligence-Based Technique. Arab J Sci Eng 48, 11407–11423 (2023). https://doi.org/10.1007/s13369-022-07467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07467-0

Keywords

Navigation